Solve for x
x = \frac{\sqrt{985} + 20}{9} \approx 5.709412184
x=\frac{20-\sqrt{985}}{9}\approx -1.264967739
Graph
Share
Copied to clipboard
\frac{1}{4}\left(x-5\right)\left(9x+5\right)=10
Multiply 2 and \frac{1}{8} to get \frac{1}{4}.
\left(\frac{1}{4}x-\frac{5}{4}\right)\left(9x+5\right)=10
Use the distributive property to multiply \frac{1}{4} by x-5.
\frac{9}{4}x^{2}-10x-\frac{25}{4}=10
Use the distributive property to multiply \frac{1}{4}x-\frac{5}{4} by 9x+5 and combine like terms.
\frac{9}{4}x^{2}-10x-\frac{25}{4}-10=0
Subtract 10 from both sides.
\frac{9}{4}x^{2}-10x-\frac{65}{4}=0
Subtract 10 from -\frac{25}{4} to get -\frac{65}{4}.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times \frac{9}{4}\left(-\frac{65}{4}\right)}}{2\times \frac{9}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{9}{4} for a, -10 for b, and -\frac{65}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times \frac{9}{4}\left(-\frac{65}{4}\right)}}{2\times \frac{9}{4}}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-9\left(-\frac{65}{4}\right)}}{2\times \frac{9}{4}}
Multiply -4 times \frac{9}{4}.
x=\frac{-\left(-10\right)±\sqrt{100+\frac{585}{4}}}{2\times \frac{9}{4}}
Multiply -9 times -\frac{65}{4}.
x=\frac{-\left(-10\right)±\sqrt{\frac{985}{4}}}{2\times \frac{9}{4}}
Add 100 to \frac{585}{4}.
x=\frac{-\left(-10\right)±\frac{\sqrt{985}}{2}}{2\times \frac{9}{4}}
Take the square root of \frac{985}{4}.
x=\frac{10±\frac{\sqrt{985}}{2}}{2\times \frac{9}{4}}
The opposite of -10 is 10.
x=\frac{10±\frac{\sqrt{985}}{2}}{\frac{9}{2}}
Multiply 2 times \frac{9}{4}.
x=\frac{\frac{\sqrt{985}}{2}+10}{\frac{9}{2}}
Now solve the equation x=\frac{10±\frac{\sqrt{985}}{2}}{\frac{9}{2}} when ± is plus. Add 10 to \frac{\sqrt{985}}{2}.
x=\frac{\sqrt{985}+20}{9}
Divide 10+\frac{\sqrt{985}}{2} by \frac{9}{2} by multiplying 10+\frac{\sqrt{985}}{2} by the reciprocal of \frac{9}{2}.
x=\frac{-\frac{\sqrt{985}}{2}+10}{\frac{9}{2}}
Now solve the equation x=\frac{10±\frac{\sqrt{985}}{2}}{\frac{9}{2}} when ± is minus. Subtract \frac{\sqrt{985}}{2} from 10.
x=\frac{20-\sqrt{985}}{9}
Divide 10-\frac{\sqrt{985}}{2} by \frac{9}{2} by multiplying 10-\frac{\sqrt{985}}{2} by the reciprocal of \frac{9}{2}.
x=\frac{\sqrt{985}+20}{9} x=\frac{20-\sqrt{985}}{9}
The equation is now solved.
\frac{1}{4}\left(x-5\right)\left(9x+5\right)=10
Multiply 2 and \frac{1}{8} to get \frac{1}{4}.
\left(\frac{1}{4}x-\frac{5}{4}\right)\left(9x+5\right)=10
Use the distributive property to multiply \frac{1}{4} by x-5.
\frac{9}{4}x^{2}-10x-\frac{25}{4}=10
Use the distributive property to multiply \frac{1}{4}x-\frac{5}{4} by 9x+5 and combine like terms.
\frac{9}{4}x^{2}-10x=10+\frac{25}{4}
Add \frac{25}{4} to both sides.
\frac{9}{4}x^{2}-10x=\frac{65}{4}
Add 10 and \frac{25}{4} to get \frac{65}{4}.
\frac{\frac{9}{4}x^{2}-10x}{\frac{9}{4}}=\frac{\frac{65}{4}}{\frac{9}{4}}
Divide both sides of the equation by \frac{9}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{10}{\frac{9}{4}}\right)x=\frac{\frac{65}{4}}{\frac{9}{4}}
Dividing by \frac{9}{4} undoes the multiplication by \frac{9}{4}.
x^{2}-\frac{40}{9}x=\frac{\frac{65}{4}}{\frac{9}{4}}
Divide -10 by \frac{9}{4} by multiplying -10 by the reciprocal of \frac{9}{4}.
x^{2}-\frac{40}{9}x=\frac{65}{9}
Divide \frac{65}{4} by \frac{9}{4} by multiplying \frac{65}{4} by the reciprocal of \frac{9}{4}.
x^{2}-\frac{40}{9}x+\left(-\frac{20}{9}\right)^{2}=\frac{65}{9}+\left(-\frac{20}{9}\right)^{2}
Divide -\frac{40}{9}, the coefficient of the x term, by 2 to get -\frac{20}{9}. Then add the square of -\frac{20}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{40}{9}x+\frac{400}{81}=\frac{65}{9}+\frac{400}{81}
Square -\frac{20}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{40}{9}x+\frac{400}{81}=\frac{985}{81}
Add \frac{65}{9} to \frac{400}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{20}{9}\right)^{2}=\frac{985}{81}
Factor x^{2}-\frac{40}{9}x+\frac{400}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{20}{9}\right)^{2}}=\sqrt{\frac{985}{81}}
Take the square root of both sides of the equation.
x-\frac{20}{9}=\frac{\sqrt{985}}{9} x-\frac{20}{9}=-\frac{\sqrt{985}}{9}
Simplify.
x=\frac{\sqrt{985}+20}{9} x=\frac{20-\sqrt{985}}{9}
Add \frac{20}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}