Solve for x
x=3x_{2}+4
Solve for x_2
x_{2}=\frac{x-4}{3}
Graph
Share
Copied to clipboard
2x+2-3x_{2}=x+6
Use the distributive property to multiply 2 by x+1.
2x+2-3x_{2}-x=6
Subtract x from both sides.
x+2-3x_{2}=6
Combine 2x and -x to get x.
x-3x_{2}=6-2
Subtract 2 from both sides.
x-3x_{2}=4
Subtract 2 from 6 to get 4.
x=4+3x_{2}
Add 3x_{2} to both sides.
2x+2-3x_{2}=x+6
Use the distributive property to multiply 2 by x+1.
2-3x_{2}=x+6-2x
Subtract 2x from both sides.
2-3x_{2}=-x+6
Combine x and -2x to get -x.
-3x_{2}=-x+6-2
Subtract 2 from both sides.
-3x_{2}=-x+4
Subtract 2 from 6 to get 4.
-3x_{2}=4-x
The equation is in standard form.
\frac{-3x_{2}}{-3}=\frac{4-x}{-3}
Divide both sides by -3.
x_{2}=\frac{4-x}{-3}
Dividing by -3 undoes the multiplication by -3.
x_{2}=\frac{x-4}{3}
Divide -x+4 by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}