Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

8-2x-\frac{2x\left(4-x\right)}{4-x^{2}}
Use the distributive property to multiply 2 by 4-x.
8-2x-\frac{8x-2x^{2}}{4-x^{2}}
Use the distributive property to multiply 2x by 4-x.
8-2x-\frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)}
Factor 4-x^{2}.
\frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-\frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8-2x times \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)-\left(8x-2x^{2}\right)}{\left(x-2\right)\left(-x-2\right)}
Since \frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} and \frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-8x^{2}+32+2x^{3}-8x-8x+2x^{2}}{\left(x-2\right)\left(-x-2\right)}
Do the multiplications in \left(8-2x\right)\left(x-2\right)\left(-x-2\right)-\left(8x-2x^{2}\right).
\frac{-6x^{2}+32+2x^{3}-16x}{\left(x-2\right)\left(-x-2\right)}
Combine like terms in -8x^{2}+32+2x^{3}-8x-8x+2x^{2}.
\frac{-6x^{2}+32+2x^{3}-16x}{-x^{2}+4}
Expand \left(x-2\right)\left(-x-2\right).
8-2x-\frac{2x\left(4-x\right)}{4-x^{2}}
Use the distributive property to multiply 2 by 4-x.
8-2x-\frac{8x-2x^{2}}{4-x^{2}}
Use the distributive property to multiply 2x by 4-x.
8-2x-\frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)}
Factor 4-x^{2}.
\frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-\frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8-2x times \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)-\left(8x-2x^{2}\right)}{\left(x-2\right)\left(-x-2\right)}
Since \frac{\left(8-2x\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} and \frac{8x-2x^{2}}{\left(x-2\right)\left(-x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-8x^{2}+32+2x^{3}-8x-8x+2x^{2}}{\left(x-2\right)\left(-x-2\right)}
Do the multiplications in \left(8-2x\right)\left(x-2\right)\left(-x-2\right)-\left(8x-2x^{2}\right).
\frac{-6x^{2}+32+2x^{3}-16x}{\left(x-2\right)\left(-x-2\right)}
Combine like terms in -8x^{2}+32+2x^{3}-8x-8x+2x^{2}.
\frac{-6x^{2}+32+2x^{3}-16x}{-x^{2}+4}
Expand \left(x-2\right)\left(-x-2\right).