Solve for x
x=\frac{5y}{6}+\frac{7}{3}
Solve for y
y=\frac{6x-14}{5}
Graph
Share
Copied to clipboard
6x-14-5y=0
Use the distributive property to multiply 2 by 3x-7.
6x-5y=14
Add 14 to both sides. Anything plus zero gives itself.
6x=14+5y
Add 5y to both sides.
6x=5y+14
The equation is in standard form.
\frac{6x}{6}=\frac{5y+14}{6}
Divide both sides by 6.
x=\frac{5y+14}{6}
Dividing by 6 undoes the multiplication by 6.
x=\frac{5y}{6}+\frac{7}{3}
Divide 14+5y by 6.
6x-14-5y=0
Use the distributive property to multiply 2 by 3x-7.
-14-5y=-6x
Subtract 6x from both sides. Anything subtracted from zero gives its negation.
-5y=-6x+14
Add 14 to both sides.
-5y=14-6x
The equation is in standard form.
\frac{-5y}{-5}=\frac{14-6x}{-5}
Divide both sides by -5.
y=\frac{14-6x}{-5}
Dividing by -5 undoes the multiplication by -5.
y=\frac{6x-14}{5}
Divide -6x+14 by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}