Solve for x
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Share
Copied to clipboard
2x+\frac{96}{48}=\frac{13}{2}
Divide both sides by 2.
2x+2=\frac{13}{2}
Divide 96 by 48 to get 2.
2x=\frac{13}{2}-2
Subtract 2 from both sides.
2x=\frac{13}{2}-\frac{4}{2}
Convert 2 to fraction \frac{4}{2}.
2x=\frac{13-4}{2}
Since \frac{13}{2} and \frac{4}{2} have the same denominator, subtract them by subtracting their numerators.
2x=\frac{9}{2}
Subtract 4 from 13 to get 9.
x=\frac{\frac{9}{2}}{2}
Divide both sides by 2.
x=\frac{9}{2\times 2}
Express \frac{\frac{9}{2}}{2} as a single fraction.
x=\frac{9}{4}
Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}