Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(10-3x\right)^{2}-3=29
Multiply 10-3x and 10-3x to get \left(10-3x\right)^{2}.
2\left(100-60x+9x^{2}\right)-3=29
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-3x\right)^{2}.
200-120x+18x^{2}-3=29
Use the distributive property to multiply 2 by 100-60x+9x^{2}.
197-120x+18x^{2}=29
Subtract 3 from 200 to get 197.
197-120x+18x^{2}-29=0
Subtract 29 from both sides.
168-120x+18x^{2}=0
Subtract 29 from 197 to get 168.
18x^{2}-120x+168=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 18\times 168}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, -120 for b, and 168 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-120\right)±\sqrt{14400-4\times 18\times 168}}{2\times 18}
Square -120.
x=\frac{-\left(-120\right)±\sqrt{14400-72\times 168}}{2\times 18}
Multiply -4 times 18.
x=\frac{-\left(-120\right)±\sqrt{14400-12096}}{2\times 18}
Multiply -72 times 168.
x=\frac{-\left(-120\right)±\sqrt{2304}}{2\times 18}
Add 14400 to -12096.
x=\frac{-\left(-120\right)±48}{2\times 18}
Take the square root of 2304.
x=\frac{120±48}{2\times 18}
The opposite of -120 is 120.
x=\frac{120±48}{36}
Multiply 2 times 18.
x=\frac{168}{36}
Now solve the equation x=\frac{120±48}{36} when ± is plus. Add 120 to 48.
x=\frac{14}{3}
Reduce the fraction \frac{168}{36} to lowest terms by extracting and canceling out 12.
x=\frac{72}{36}
Now solve the equation x=\frac{120±48}{36} when ± is minus. Subtract 48 from 120.
x=2
Divide 72 by 36.
x=\frac{14}{3} x=2
The equation is now solved.
2\left(10-3x\right)^{2}-3=29
Multiply 10-3x and 10-3x to get \left(10-3x\right)^{2}.
2\left(100-60x+9x^{2}\right)-3=29
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-3x\right)^{2}.
200-120x+18x^{2}-3=29
Use the distributive property to multiply 2 by 100-60x+9x^{2}.
197-120x+18x^{2}=29
Subtract 3 from 200 to get 197.
-120x+18x^{2}=29-197
Subtract 197 from both sides.
-120x+18x^{2}=-168
Subtract 197 from 29 to get -168.
18x^{2}-120x=-168
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{18x^{2}-120x}{18}=-\frac{168}{18}
Divide both sides by 18.
x^{2}+\left(-\frac{120}{18}\right)x=-\frac{168}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}-\frac{20}{3}x=-\frac{168}{18}
Reduce the fraction \frac{-120}{18} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{20}{3}x=-\frac{28}{3}
Reduce the fraction \frac{-168}{18} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=-\frac{28}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-\frac{28}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{16}{9}
Add -\frac{28}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=\frac{16}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{4}{3} x-\frac{10}{3}=-\frac{4}{3}
Simplify.
x=\frac{14}{3} x=2
Add \frac{10}{3} to both sides of the equation.