Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2+2x\right)^{2}=\left(\sqrt{6x^{2}+6}\right)^{2}
Square both sides of the equation.
4+8x+4x^{2}=\left(\sqrt{6x^{2}+6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+2x\right)^{2}.
4+8x+4x^{2}=6x^{2}+6
Calculate \sqrt{6x^{2}+6} to the power of 2 and get 6x^{2}+6.
4+8x+4x^{2}-6x^{2}=6
Subtract 6x^{2} from both sides.
4+8x-2x^{2}=6
Combine 4x^{2} and -6x^{2} to get -2x^{2}.
4+8x-2x^{2}-6=0
Subtract 6 from both sides.
-2+8x-2x^{2}=0
Subtract 6 from 4 to get -2.
-2x^{2}+8x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 8 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Square 8.
x=\frac{-8±\sqrt{64+8\left(-2\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-8±\sqrt{64-16}}{2\left(-2\right)}
Multiply 8 times -2.
x=\frac{-8±\sqrt{48}}{2\left(-2\right)}
Add 64 to -16.
x=\frac{-8±4\sqrt{3}}{2\left(-2\right)}
Take the square root of 48.
x=\frac{-8±4\sqrt{3}}{-4}
Multiply 2 times -2.
x=\frac{4\sqrt{3}-8}{-4}
Now solve the equation x=\frac{-8±4\sqrt{3}}{-4} when ± is plus. Add -8 to 4\sqrt{3}.
x=2-\sqrt{3}
Divide -8+4\sqrt{3} by -4.
x=\frac{-4\sqrt{3}-8}{-4}
Now solve the equation x=\frac{-8±4\sqrt{3}}{-4} when ± is minus. Subtract 4\sqrt{3} from -8.
x=\sqrt{3}+2
Divide -8-4\sqrt{3} by -4.
x=2-\sqrt{3} x=\sqrt{3}+2
The equation is now solved.
2+2\left(2-\sqrt{3}\right)=\sqrt{6\left(2-\sqrt{3}\right)^{2}+6}
Substitute 2-\sqrt{3} for x in the equation 2+2x=\sqrt{6x^{2}+6}.
6-2\times 3^{\frac{1}{2}}=6-2\times 3^{\frac{1}{2}}
Simplify. The value x=2-\sqrt{3} satisfies the equation.
2+2\left(\sqrt{3}+2\right)=\sqrt{6\left(\sqrt{3}+2\right)^{2}+6}
Substitute \sqrt{3}+2 for x in the equation 2+2x=\sqrt{6x^{2}+6}.
6+2\times 3^{\frac{1}{2}}=6+2\times 3^{\frac{1}{2}}
Simplify. The value x=\sqrt{3}+2 satisfies the equation.
x=2-\sqrt{3} x=\sqrt{3}+2
List all solutions of 2x+2=\sqrt{6x^{2}+6}.