Evaluate
-4.4
Factor
-4.4
Share
Copied to clipboard
\frac{6}{3}+\frac{1}{3}+6+\frac{3}{5}-\left(2+\frac{1}{3}\right)-\left(5+\frac{2}{5}\right)-5.6
Convert 2 to fraction \frac{6}{3}.
\frac{6+1}{3}+6+\frac{3}{5}-\left(2+\frac{1}{3}\right)-\left(5+\frac{2}{5}\right)-5.6
Since \frac{6}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{7}{3}+6+\frac{3}{5}-\left(2+\frac{1}{3}\right)-\left(5+\frac{2}{5}\right)-5.6
Add 6 and 1 to get 7.
\frac{7}{3}+\frac{18}{3}+\frac{3}{5}-\left(2+\frac{1}{3}\right)-\left(5+\frac{2}{5}\right)-5.6
Convert 6 to fraction \frac{18}{3}.
\frac{7+18}{3}+\frac{3}{5}-\left(2+\frac{1}{3}\right)-\left(5+\frac{2}{5}\right)-5.6
Since \frac{7}{3} and \frac{18}{3} have the same denominator, add them by adding their numerators.
\frac{25}{3}+\frac{3}{5}-\left(2+\frac{1}{3}\right)-\left(5+\frac{2}{5}\right)-5.6
Add 7 and 18 to get 25.
\frac{125}{15}+\frac{9}{15}-\left(2+\frac{1}{3}\right)-\left(5+\frac{2}{5}\right)-5.6
Least common multiple of 3 and 5 is 15. Convert \frac{25}{3} and \frac{3}{5} to fractions with denominator 15.
\frac{125+9}{15}-\left(2+\frac{1}{3}\right)-\left(5+\frac{2}{5}\right)-5.6
Since \frac{125}{15} and \frac{9}{15} have the same denominator, add them by adding their numerators.
\frac{134}{15}-\left(2+\frac{1}{3}\right)-\left(5+\frac{2}{5}\right)-5.6
Add 125 and 9 to get 134.
\frac{134}{15}-\left(\frac{6}{3}+\frac{1}{3}\right)-\left(5+\frac{2}{5}\right)-5.6
Convert 2 to fraction \frac{6}{3}.
\frac{134}{15}-\frac{6+1}{3}-\left(5+\frac{2}{5}\right)-5.6
Since \frac{6}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{134}{15}-\frac{7}{3}-\left(5+\frac{2}{5}\right)-5.6
Add 6 and 1 to get 7.
\frac{134}{15}-\frac{35}{15}-\left(5+\frac{2}{5}\right)-5.6
Least common multiple of 15 and 3 is 15. Convert \frac{134}{15} and \frac{7}{3} to fractions with denominator 15.
\frac{134-35}{15}-\left(5+\frac{2}{5}\right)-5.6
Since \frac{134}{15} and \frac{35}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{99}{15}-\left(5+\frac{2}{5}\right)-5.6
Subtract 35 from 134 to get 99.
\frac{33}{5}-\left(5+\frac{2}{5}\right)-5.6
Reduce the fraction \frac{99}{15} to lowest terms by extracting and canceling out 3.
\frac{33}{5}-\left(\frac{25}{5}+\frac{2}{5}\right)-5.6
Convert 5 to fraction \frac{25}{5}.
\frac{33}{5}-\frac{25+2}{5}-5.6
Since \frac{25}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
\frac{33}{5}-\frac{27}{5}-5.6
Add 25 and 2 to get 27.
\frac{33-27}{5}-5.6
Since \frac{33}{5} and \frac{27}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{6}{5}-5.6
Subtract 27 from 33 to get 6.
\frac{6}{5}-\frac{28}{5}
Convert decimal number 5.6 to fraction \frac{56}{10}. Reduce the fraction \frac{56}{10} to lowest terms by extracting and canceling out 2.
\frac{6-28}{5}
Since \frac{6}{5} and \frac{28}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{22}{5}
Subtract 28 from 6 to get -22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}