Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3=\left(2x+3\right)\left(5x-3\right)
Add 2 and 1 to get 3.
3=10x^{2}+9x-9
Use the distributive property to multiply 2x+3 by 5x-3 and combine like terms.
10x^{2}+9x-9=3
Swap sides so that all variable terms are on the left hand side.
10x^{2}+9x-9-3=0
Subtract 3 from both sides.
10x^{2}+9x-12=0
Subtract 3 from -9 to get -12.
x=\frac{-9±\sqrt{9^{2}-4\times 10\left(-12\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 9 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 10\left(-12\right)}}{2\times 10}
Square 9.
x=\frac{-9±\sqrt{81-40\left(-12\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-9±\sqrt{81+480}}{2\times 10}
Multiply -40 times -12.
x=\frac{-9±\sqrt{561}}{2\times 10}
Add 81 to 480.
x=\frac{-9±\sqrt{561}}{20}
Multiply 2 times 10.
x=\frac{\sqrt{561}-9}{20}
Now solve the equation x=\frac{-9±\sqrt{561}}{20} when ± is plus. Add -9 to \sqrt{561}.
x=\frac{-\sqrt{561}-9}{20}
Now solve the equation x=\frac{-9±\sqrt{561}}{20} when ± is minus. Subtract \sqrt{561} from -9.
x=\frac{\sqrt{561}-9}{20} x=\frac{-\sqrt{561}-9}{20}
The equation is now solved.
3=\left(2x+3\right)\left(5x-3\right)
Add 2 and 1 to get 3.
3=10x^{2}+9x-9
Use the distributive property to multiply 2x+3 by 5x-3 and combine like terms.
10x^{2}+9x-9=3
Swap sides so that all variable terms are on the left hand side.
10x^{2}+9x=3+9
Add 9 to both sides.
10x^{2}+9x=12
Add 3 and 9 to get 12.
\frac{10x^{2}+9x}{10}=\frac{12}{10}
Divide both sides by 10.
x^{2}+\frac{9}{10}x=\frac{12}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+\frac{9}{10}x=\frac{6}{5}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{9}{10}x+\left(\frac{9}{20}\right)^{2}=\frac{6}{5}+\left(\frac{9}{20}\right)^{2}
Divide \frac{9}{10}, the coefficient of the x term, by 2 to get \frac{9}{20}. Then add the square of \frac{9}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{10}x+\frac{81}{400}=\frac{6}{5}+\frac{81}{400}
Square \frac{9}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{10}x+\frac{81}{400}=\frac{561}{400}
Add \frac{6}{5} to \frac{81}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{20}\right)^{2}=\frac{561}{400}
Factor x^{2}+\frac{9}{10}x+\frac{81}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{20}\right)^{2}}=\sqrt{\frac{561}{400}}
Take the square root of both sides of the equation.
x+\frac{9}{20}=\frac{\sqrt{561}}{20} x+\frac{9}{20}=-\frac{\sqrt{561}}{20}
Simplify.
x=\frac{\sqrt{561}-9}{20} x=\frac{-\sqrt{561}-9}{20}
Subtract \frac{9}{20} from both sides of the equation.