Verify
false
Share
Copied to clipboard
2+\sqrt{2}+\frac{\sqrt{2}-2}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}+\frac{1}{\sqrt{2}-2}=7
Rationalize the denominator of \frac{1}{\sqrt{2}+2} by multiplying numerator and denominator by \sqrt{2}-2.
2+\sqrt{2}+\frac{\sqrt{2}-2}{\left(\sqrt{2}\right)^{2}-2^{2}}+\frac{1}{\sqrt{2}-2}=7
Consider \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2+\sqrt{2}+\frac{\sqrt{2}-2}{2-4}+\frac{1}{\sqrt{2}-2}=7
Square \sqrt{2}. Square 2.
2+\sqrt{2}+\frac{\sqrt{2}-2}{-2}+\frac{1}{\sqrt{2}-2}=7
Subtract 4 from 2 to get -2.
2+\sqrt{2}+\frac{-\sqrt{2}+2}{2}+\frac{1}{\sqrt{2}-2}=7
Multiply both numerator and denominator by -1.
2+\sqrt{2}+\frac{-\sqrt{2}+2}{2}+\frac{\sqrt{2}+2}{\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)}=7
Rationalize the denominator of \frac{1}{\sqrt{2}-2} by multiplying numerator and denominator by \sqrt{2}+2.
2+\sqrt{2}+\frac{-\sqrt{2}+2}{2}+\frac{\sqrt{2}+2}{\left(\sqrt{2}\right)^{2}-2^{2}}=7
Consider \left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2+\sqrt{2}+\frac{-\sqrt{2}+2}{2}+\frac{\sqrt{2}+2}{2-4}=7
Square \sqrt{2}. Square 2.
2+\sqrt{2}+\frac{-\sqrt{2}+2}{2}+\frac{\sqrt{2}+2}{-2}=7
Subtract 4 from 2 to get -2.
\frac{2\left(2+\sqrt{2}\right)}{2}+\frac{-\sqrt{2}+2}{2}+\frac{\sqrt{2}+2}{-2}=7
To add or subtract expressions, expand them to make their denominators the same. Multiply 2+\sqrt{2} times \frac{2}{2}.
\frac{2\left(2+\sqrt{2}\right)-\sqrt{2}+2}{2}+\frac{\sqrt{2}+2}{-2}=7
Since \frac{2\left(2+\sqrt{2}\right)}{2} and \frac{-\sqrt{2}+2}{2} have the same denominator, add them by adding their numerators.
\frac{4+2\sqrt{2}-\sqrt{2}+2}{2}+\frac{\sqrt{2}+2}{-2}=7
Do the multiplications in 2\left(2+\sqrt{2}\right)-\sqrt{2}+2.
\frac{6+\sqrt{2}}{2}+\frac{\sqrt{2}+2}{-2}=7
Do the calculations in 4+2\sqrt{2}-\sqrt{2}+2.
\frac{6+\sqrt{2}}{2}+\frac{\sqrt{2}+2}{-2}-7=0
Subtract 7 from both sides.
\frac{6+\sqrt{2}}{2}+\frac{\sqrt{2}+2}{-2}-\frac{7\times 2}{2}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{2}{2}.
\frac{6+\sqrt{2}-7\times 2}{2}+\frac{\sqrt{2}+2}{-2}=0
Since \frac{6+\sqrt{2}}{2} and \frac{7\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{6+\sqrt{2}-14}{2}+\frac{\sqrt{2}+2}{-2}=0
Do the multiplications in 6+\sqrt{2}-7\times 2.
\frac{-8+\sqrt{2}}{2}+\frac{\sqrt{2}+2}{-2}=0
Do the calculations in 6+\sqrt{2}-14.
-8+\sqrt{2}-\left(\sqrt{2}+2\right)=0
Multiply both sides of the equation by 2, the least common multiple of 2,-2.
-8+\sqrt{2}-\sqrt{2}-2=0
To find the opposite of \sqrt{2}+2, find the opposite of each term.
-8-2=0
Combine \sqrt{2} and -\sqrt{2} to get 0.
-10=0
Subtract 2 from -8 to get -10.
\text{false}
Compare -10 and 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}