Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Share
Copied to clipboard
\left(x-3\right)\left(x+3\right)\times 2+\left(x-3\right)x=\left(x+3\right)\times 3x
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3.
\left(x^{2}-9\right)\times 2+\left(x-3\right)x=\left(x+3\right)\times 3x
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2x^{2}-18+\left(x-3\right)x=\left(x+3\right)\times 3x
Use the distributive property to multiply x^{2}-9 by 2.
2x^{2}-18+x^{2}-3x=\left(x+3\right)\times 3x
Use the distributive property to multiply x-3 by x.
3x^{2}-18-3x=\left(x+3\right)\times 3x
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-18-3x=\left(3x+9\right)x
Use the distributive property to multiply x+3 by 3.
3x^{2}-18-3x=3x^{2}+9x
Use the distributive property to multiply 3x+9 by x.
3x^{2}-18-3x-3x^{2}=9x
Subtract 3x^{2} from both sides.
-18-3x=9x
Combine 3x^{2} and -3x^{2} to get 0.
-18-3x-9x=0
Subtract 9x from both sides.
-18-12x=0
Combine -3x and -9x to get -12x.
-12x=18
Add 18 to both sides. Anything plus zero gives itself.
x=\frac{18}{-12}
Divide both sides by -12.
x=-\frac{3}{2}
Reduce the fraction \frac{18}{-12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}