Solve for x
x = \frac{25}{12} = 2\frac{1}{12} \approx 2.083333333
Graph
Share
Copied to clipboard
24+4\left(3x-2\right)=3\left(8x-3\right)
Multiply both sides of the equation by 12, the least common multiple of 3,4.
24+12x-8=3\left(8x-3\right)
Use the distributive property to multiply 4 by 3x-2.
16+12x=3\left(8x-3\right)
Subtract 8 from 24 to get 16.
16+12x=24x-9
Use the distributive property to multiply 3 by 8x-3.
16+12x-24x=-9
Subtract 24x from both sides.
16-12x=-9
Combine 12x and -24x to get -12x.
-12x=-9-16
Subtract 16 from both sides.
-12x=-25
Subtract 16 from -9 to get -25.
x=\frac{-25}{-12}
Divide both sides by -12.
x=\frac{25}{12}
Fraction \frac{-25}{-12} can be simplified to \frac{25}{12} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}