Factor
2\left(z-1\right)\left(z+7\right)z^{2}
Evaluate
2\left(z-1\right)\left(z+7\right)z^{2}
Share
Copied to clipboard
2\left(z^{4}+6z^{3}-7z^{2}\right)
Factor out 2.
z^{2}\left(z^{2}+6z-7\right)
Consider z^{4}+6z^{3}-7z^{2}. Factor out z^{2}.
a+b=6 ab=1\left(-7\right)=-7
Consider z^{2}+6z-7. Factor the expression by grouping. First, the expression needs to be rewritten as z^{2}+az+bz-7. To find a and b, set up a system to be solved.
a=-1 b=7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(z^{2}-z\right)+\left(7z-7\right)
Rewrite z^{2}+6z-7 as \left(z^{2}-z\right)+\left(7z-7\right).
z\left(z-1\right)+7\left(z-1\right)
Factor out z in the first and 7 in the second group.
\left(z-1\right)\left(z+7\right)
Factor out common term z-1 by using distributive property.
2z^{2}\left(z-1\right)\left(z+7\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}