Solve for z
z=\frac{3}{2}i=1.5i
z=-i
Share
Copied to clipboard
2z^{2}-iz+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{i±\sqrt{\left(-i\right)^{2}-4\times 2\times 3}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -i for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{i±\sqrt{-1-4\times 2\times 3}}{2\times 2}
Square -i.
z=\frac{i±\sqrt{-1-8\times 3}}{2\times 2}
Multiply -4 times 2.
z=\frac{i±\sqrt{-1-24}}{2\times 2}
Multiply -8 times 3.
z=\frac{i±\sqrt{-25}}{2\times 2}
Add -1 to -24.
z=\frac{i±5i}{2\times 2}
Take the square root of -25.
z=\frac{i±5i}{4}
Multiply 2 times 2.
z=\frac{6i}{4}
Now solve the equation z=\frac{i±5i}{4} when ± is plus. Add i to 5i.
z=\frac{3}{2}i
Divide 6i by 4.
z=\frac{-4i}{4}
Now solve the equation z=\frac{i±5i}{4} when ± is minus. Subtract 5i from i.
z=-i
Divide -4i by 4.
z=\frac{3}{2}i z=-i
The equation is now solved.
2z^{2}-iz+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2z^{2}-iz+3-3=-3
Subtract 3 from both sides of the equation.
2z^{2}-iz=-3
Subtracting 3 from itself leaves 0.
\frac{2z^{2}-iz}{2}=-\frac{3}{2}
Divide both sides by 2.
z^{2}+\frac{-i}{2}z=-\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
z^{2}-\frac{1}{2}iz=-\frac{3}{2}
Divide -i by 2.
z^{2}-\frac{1}{2}iz+\left(-\frac{1}{4}i\right)^{2}=-\frac{3}{2}+\left(-\frac{1}{4}i\right)^{2}
Divide -\frac{1}{2}i, the coefficient of the x term, by 2 to get -\frac{1}{4}i. Then add the square of -\frac{1}{4}i to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{1}{2}iz-\frac{1}{16}=-\frac{3}{2}-\frac{1}{16}
Square -\frac{1}{4}i.
z^{2}-\frac{1}{2}iz-\frac{1}{16}=-\frac{25}{16}
Add -\frac{3}{2} to -\frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z-\frac{1}{4}i\right)^{2}=-\frac{25}{16}
Factor z^{2}-\frac{1}{2}iz-\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{1}{4}i\right)^{2}}=\sqrt{-\frac{25}{16}}
Take the square root of both sides of the equation.
z-\frac{1}{4}i=\frac{5}{4}i z-\frac{1}{4}i=-\frac{5}{4}i
Simplify.
z=\frac{3}{2}i z=-i
Add \frac{1}{4}i to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}