Solve for z
z=-2
z=0
Share
Copied to clipboard
2z+4=2z^{2}+6z+4
Use the distributive property to multiply 2z+2 by z+2 and combine like terms.
2z+4-2z^{2}=6z+4
Subtract 2z^{2} from both sides.
2z+4-2z^{2}-6z=4
Subtract 6z from both sides.
-4z+4-2z^{2}=4
Combine 2z and -6z to get -4z.
-4z+4-2z^{2}-4=0
Subtract 4 from both sides.
-4z-2z^{2}=0
Subtract 4 from 4 to get 0.
-2z^{2}-4z=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -4 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-4\right)±4}{2\left(-2\right)}
Take the square root of \left(-4\right)^{2}.
z=\frac{4±4}{2\left(-2\right)}
The opposite of -4 is 4.
z=\frac{4±4}{-4}
Multiply 2 times -2.
z=\frac{8}{-4}
Now solve the equation z=\frac{4±4}{-4} when ± is plus. Add 4 to 4.
z=-2
Divide 8 by -4.
z=\frac{0}{-4}
Now solve the equation z=\frac{4±4}{-4} when ± is minus. Subtract 4 from 4.
z=0
Divide 0 by -4.
z=-2 z=0
The equation is now solved.
2z+4=2z^{2}+6z+4
Use the distributive property to multiply 2z+2 by z+2 and combine like terms.
2z+4-2z^{2}=6z+4
Subtract 2z^{2} from both sides.
2z+4-2z^{2}-6z=4
Subtract 6z from both sides.
-4z+4-2z^{2}=4
Combine 2z and -6z to get -4z.
-4z-2z^{2}=4-4
Subtract 4 from both sides.
-4z-2z^{2}=0
Subtract 4 from 4 to get 0.
-2z^{2}-4z=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2z^{2}-4z}{-2}=\frac{0}{-2}
Divide both sides by -2.
z^{2}+\left(-\frac{4}{-2}\right)z=\frac{0}{-2}
Dividing by -2 undoes the multiplication by -2.
z^{2}+2z=\frac{0}{-2}
Divide -4 by -2.
z^{2}+2z=0
Divide 0 by -2.
z^{2}+2z+1^{2}=1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+2z+1=1
Square 1.
\left(z+1\right)^{2}=1
Factor z^{2}+2z+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
z+1=1 z+1=-1
Simplify.
z=0 z=-2
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}