2 y d y = ( x ^ { 2 } + 1 ) d x
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=\sqrt[3]{\sqrt{y^{4}+\frac{1}{27}}+y^{2}}+\sqrt[3]{-\sqrt{y^{4}+\frac{1}{27}}+y^{2}}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{\sqrt[3]{3\sqrt{81y^{4}+3}+27y^{2}}+\sqrt[3]{-3\sqrt{81y^{4}+3}+27y^{2}}}{3}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
2y^{2}d=\left(x^{2}+1\right)dx
Multiply y and y to get y^{2}.
2y^{2}d=\left(x^{2}d+d\right)x
Use the distributive property to multiply x^{2}+1 by d.
2y^{2}d=dx^{3}+dx
Use the distributive property to multiply x^{2}d+d by x.
2y^{2}d-dx^{3}=dx
Subtract dx^{3} from both sides.
2y^{2}d-dx^{3}-dx=0
Subtract dx from both sides.
-dx^{3}-dx+2dy^{2}=0
Reorder the terms.
\left(-x^{3}-x+2y^{2}\right)d=0
Combine all terms containing d.
\left(2y^{2}-x-x^{3}\right)d=0
The equation is in standard form.
d=0
Divide 0 by -x^{3}-x+2y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}