Factor
2y\left(y-11\right)\left(y-1\right)
Evaluate
2y\left(y-11\right)\left(y-1\right)
Graph
Share
Copied to clipboard
2\left(y^{3}-12y^{2}+11y\right)
Factor out 2.
y\left(y^{2}-12y+11\right)
Consider y^{3}-12y^{2}+11y. Factor out y.
a+b=-12 ab=1\times 11=11
Consider y^{2}-12y+11. Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by+11. To find a and b, set up a system to be solved.
a=-11 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(y^{2}-11y\right)+\left(-y+11\right)
Rewrite y^{2}-12y+11 as \left(y^{2}-11y\right)+\left(-y+11\right).
y\left(y-11\right)-\left(y-11\right)
Factor out y in the first and -1 in the second group.
\left(y-11\right)\left(y-1\right)
Factor out common term y-11 by using distributive property.
2y\left(y-11\right)\left(y-1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}