Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(y^{2}-4y\right)
Factor out 2.
y\left(y-4\right)
Consider y^{2}-4y. Factor out y.
2y\left(y-4\right)
Rewrite the complete factored expression.
2y^{2}-8y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-8\right)±8}{2\times 2}
Take the square root of \left(-8\right)^{2}.
y=\frac{8±8}{2\times 2}
The opposite of -8 is 8.
y=\frac{8±8}{4}
Multiply 2 times 2.
y=\frac{16}{4}
Now solve the equation y=\frac{8±8}{4} when ± is plus. Add 8 to 8.
y=4
Divide 16 by 4.
y=\frac{0}{4}
Now solve the equation y=\frac{8±8}{4} when ± is minus. Subtract 8 from 8.
y=0
Divide 0 by 4.
2y^{2}-8y=2\left(y-4\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and 0 for x_{2}.