Solve for y
y = \frac{\sqrt{65} + 3}{4} \approx 2.765564437
y=\frac{3-\sqrt{65}}{4}\approx -1.265564437
Graph
Share
Copied to clipboard
2y^{2}-3y-5=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2y^{2}-3y-5-2=2-2
Subtract 2 from both sides of the equation.
2y^{2}-3y-5-2=0
Subtracting 2 from itself leaves 0.
2y^{2}-3y-7=0
Subtract 2 from -5.
y=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-7\right)}}{2\times 2}
Square -3.
y=\frac{-\left(-3\right)±\sqrt{9-8\left(-7\right)}}{2\times 2}
Multiply -4 times 2.
y=\frac{-\left(-3\right)±\sqrt{9+56}}{2\times 2}
Multiply -8 times -7.
y=\frac{-\left(-3\right)±\sqrt{65}}{2\times 2}
Add 9 to 56.
y=\frac{3±\sqrt{65}}{2\times 2}
The opposite of -3 is 3.
y=\frac{3±\sqrt{65}}{4}
Multiply 2 times 2.
y=\frac{\sqrt{65}+3}{4}
Now solve the equation y=\frac{3±\sqrt{65}}{4} when ± is plus. Add 3 to \sqrt{65}.
y=\frac{3-\sqrt{65}}{4}
Now solve the equation y=\frac{3±\sqrt{65}}{4} when ± is minus. Subtract \sqrt{65} from 3.
y=\frac{\sqrt{65}+3}{4} y=\frac{3-\sqrt{65}}{4}
The equation is now solved.
2y^{2}-3y-5=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2y^{2}-3y-5-\left(-5\right)=2-\left(-5\right)
Add 5 to both sides of the equation.
2y^{2}-3y=2-\left(-5\right)
Subtracting -5 from itself leaves 0.
2y^{2}-3y=7
Subtract -5 from 2.
\frac{2y^{2}-3y}{2}=\frac{7}{2}
Divide both sides by 2.
y^{2}-\frac{3}{2}y=\frac{7}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}-\frac{3}{2}y+\left(-\frac{3}{4}\right)^{2}=\frac{7}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{3}{2}y+\frac{9}{16}=\frac{7}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{3}{2}y+\frac{9}{16}=\frac{65}{16}
Add \frac{7}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{3}{4}\right)^{2}=\frac{65}{16}
Factor y^{2}-\frac{3}{2}y+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{4}\right)^{2}}=\sqrt{\frac{65}{16}}
Take the square root of both sides of the equation.
y-\frac{3}{4}=\frac{\sqrt{65}}{4} y-\frac{3}{4}=-\frac{\sqrt{65}}{4}
Simplify.
y=\frac{\sqrt{65}+3}{4} y=\frac{3-\sqrt{65}}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}