Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(y^{2}+y\right)
Factor out 2.
y\left(y+1\right)
Consider y^{2}+y. Factor out y.
2y\left(y+1\right)
Rewrite the complete factored expression.
2y^{2}+2y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-2±\sqrt{2^{2}}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-2±2}{2\times 2}
Take the square root of 2^{2}.
y=\frac{-2±2}{4}
Multiply 2 times 2.
y=\frac{0}{4}
Now solve the equation y=\frac{-2±2}{4} when ± is plus. Add -2 to 2.
y=0
Divide 0 by 4.
y=-\frac{4}{4}
Now solve the equation y=\frac{-2±2}{4} when ± is minus. Subtract 2 from -2.
y=-1
Divide -4 by 4.
2y^{2}+2y=2y\left(y-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -1 for x_{2}.
2y^{2}+2y=2y\left(y+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.