Solve for y
y=\frac{\sqrt{11}-7}{2}\approx -1.841687605
y=\frac{-\sqrt{11}-7}{2}\approx -5.158312395
Graph
Share
Copied to clipboard
2y^{2}+14y=-19
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2y^{2}+14y-\left(-19\right)=-19-\left(-19\right)
Add 19 to both sides of the equation.
2y^{2}+14y-\left(-19\right)=0
Subtracting -19 from itself leaves 0.
2y^{2}+14y+19=0
Subtract -19 from 0.
y=\frac{-14±\sqrt{14^{2}-4\times 2\times 19}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 14 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-14±\sqrt{196-4\times 2\times 19}}{2\times 2}
Square 14.
y=\frac{-14±\sqrt{196-8\times 19}}{2\times 2}
Multiply -4 times 2.
y=\frac{-14±\sqrt{196-152}}{2\times 2}
Multiply -8 times 19.
y=\frac{-14±\sqrt{44}}{2\times 2}
Add 196 to -152.
y=\frac{-14±2\sqrt{11}}{2\times 2}
Take the square root of 44.
y=\frac{-14±2\sqrt{11}}{4}
Multiply 2 times 2.
y=\frac{2\sqrt{11}-14}{4}
Now solve the equation y=\frac{-14±2\sqrt{11}}{4} when ± is plus. Add -14 to 2\sqrt{11}.
y=\frac{\sqrt{11}-7}{2}
Divide -14+2\sqrt{11} by 4.
y=\frac{-2\sqrt{11}-14}{4}
Now solve the equation y=\frac{-14±2\sqrt{11}}{4} when ± is minus. Subtract 2\sqrt{11} from -14.
y=\frac{-\sqrt{11}-7}{2}
Divide -14-2\sqrt{11} by 4.
y=\frac{\sqrt{11}-7}{2} y=\frac{-\sqrt{11}-7}{2}
The equation is now solved.
2y^{2}+14y=-19
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2y^{2}+14y}{2}=-\frac{19}{2}
Divide both sides by 2.
y^{2}+\frac{14}{2}y=-\frac{19}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}+7y=-\frac{19}{2}
Divide 14 by 2.
y^{2}+7y+\left(\frac{7}{2}\right)^{2}=-\frac{19}{2}+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+7y+\frac{49}{4}=-\frac{19}{2}+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+7y+\frac{49}{4}=\frac{11}{4}
Add -\frac{19}{2} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{7}{2}\right)^{2}=\frac{11}{4}
Factor y^{2}+7y+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{7}{2}\right)^{2}}=\sqrt{\frac{11}{4}}
Take the square root of both sides of the equation.
y+\frac{7}{2}=\frac{\sqrt{11}}{2} y+\frac{7}{2}=-\frac{\sqrt{11}}{2}
Simplify.
y=\frac{\sqrt{11}-7}{2} y=\frac{-\sqrt{11}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}