Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2y^{2}+2y-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-2±\sqrt{2^{2}-4\times 2\left(-16\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2±\sqrt{4-4\times 2\left(-16\right)}}{2\times 2}
Square 2.
y=\frac{-2±\sqrt{4-8\left(-16\right)}}{2\times 2}
Multiply -4 times 2.
y=\frac{-2±\sqrt{4+128}}{2\times 2}
Multiply -8 times -16.
y=\frac{-2±\sqrt{132}}{2\times 2}
Add 4 to 128.
y=\frac{-2±2\sqrt{33}}{2\times 2}
Take the square root of 132.
y=\frac{-2±2\sqrt{33}}{4}
Multiply 2 times 2.
y=\frac{2\sqrt{33}-2}{4}
Now solve the equation y=\frac{-2±2\sqrt{33}}{4} when ± is plus. Add -2 to 2\sqrt{33}.
y=\frac{\sqrt{33}-1}{2}
Divide -2+2\sqrt{33} by 4.
y=\frac{-2\sqrt{33}-2}{4}
Now solve the equation y=\frac{-2±2\sqrt{33}}{4} when ± is minus. Subtract 2\sqrt{33} from -2.
y=\frac{-\sqrt{33}-1}{2}
Divide -2-2\sqrt{33} by 4.
y=\frac{\sqrt{33}-1}{2} y=\frac{-\sqrt{33}-1}{2}
The equation is now solved.
2y^{2}+2y-16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2y^{2}+2y-16-\left(-16\right)=-\left(-16\right)
Add 16 to both sides of the equation.
2y^{2}+2y=-\left(-16\right)
Subtracting -16 from itself leaves 0.
2y^{2}+2y=16
Subtract -16 from 0.
\frac{2y^{2}+2y}{2}=\frac{16}{2}
Divide both sides by 2.
y^{2}+\frac{2}{2}y=\frac{16}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}+y=\frac{16}{2}
Divide 2 by 2.
y^{2}+y=8
Divide 16 by 2.
y^{2}+y+\left(\frac{1}{2}\right)^{2}=8+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+y+\frac{1}{4}=8+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+y+\frac{1}{4}=\frac{33}{4}
Add 8 to \frac{1}{4}.
\left(y+\frac{1}{2}\right)^{2}=\frac{33}{4}
Factor y^{2}+y+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Take the square root of both sides of the equation.
y+\frac{1}{2}=\frac{\sqrt{33}}{2} y+\frac{1}{2}=-\frac{\sqrt{33}}{2}
Simplify.
y=\frac{\sqrt{33}-1}{2} y=\frac{-\sqrt{33}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.