2 x y d y - ( x ^ { 2 } - y ^ { 2 } + 1 ) d x = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=-\sqrt{3y^{2}-1}\text{ or }x=\sqrt{3y^{2}-1}\text{ or }x=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(|x|=\sqrt{3y^{2}-1}\text{ and }|y|\geq \frac{\sqrt{3}}{3}\right)\text{ or }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\sqrt{3y^{2}-1}\text{; }x=0\text{; }x=-\sqrt{3y^{2}-1}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\sqrt{3y^{2}-1}\text{; }x=-\sqrt{3y^{2}-1}\text{, }&|y|\geq \frac{\sqrt{3}}{3}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
2xy^{2}d-\left(x^{2}-y^{2}+1\right)dx=0
Multiply y and y to get y^{2}.
2xy^{2}d-\left(x^{2}d-y^{2}d+d\right)x=0
Use the distributive property to multiply x^{2}-y^{2}+1 by d.
2xy^{2}d-\left(dx^{3}-y^{2}dx+dx\right)=0
Use the distributive property to multiply x^{2}d-y^{2}d+d by x.
2xy^{2}d-dx^{3}+y^{2}dx-dx=0
To find the opposite of dx^{3}-y^{2}dx+dx, find the opposite of each term.
3xy^{2}d-dx^{3}-dx=0
Combine 2xy^{2}d and y^{2}dx to get 3xy^{2}d.
\left(3xy^{2}-x^{3}-x\right)d=0
Combine all terms containing d.
\left(-x^{3}+3xy^{2}-x\right)d=0
The equation is in standard form.
d=0
Divide 0 by 3xy^{2}-x^{3}-x.
2xy^{2}d-\left(x^{2}-y^{2}+1\right)dx=0
Multiply y and y to get y^{2}.
2xy^{2}d-\left(x^{2}d-y^{2}d+d\right)x=0
Use the distributive property to multiply x^{2}-y^{2}+1 by d.
2xy^{2}d-\left(dx^{3}-y^{2}dx+dx\right)=0
Use the distributive property to multiply x^{2}d-y^{2}d+d by x.
2xy^{2}d-dx^{3}+y^{2}dx-dx=0
To find the opposite of dx^{3}-y^{2}dx+dx, find the opposite of each term.
3xy^{2}d-dx^{3}-dx=0
Combine 2xy^{2}d and y^{2}dx to get 3xy^{2}d.
\left(3xy^{2}-x^{3}-x\right)d=0
Combine all terms containing d.
\left(-x^{3}+3xy^{2}-x\right)d=0
The equation is in standard form.
d=0
Divide 0 by 3xy^{2}-x^{3}-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}