Solve for x
x=16
Graph
Share
Copied to clipboard
\left(2x-8\right)^{2}=\left(2\sqrt{x^{2}-7x}\right)^{2}
Square both sides of the equation.
4x^{2}-32x+64=\left(2\sqrt{x^{2}-7x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-8\right)^{2}.
4x^{2}-32x+64=2^{2}\left(\sqrt{x^{2}-7x}\right)^{2}
Expand \left(2\sqrt{x^{2}-7x}\right)^{2}.
4x^{2}-32x+64=4\left(\sqrt{x^{2}-7x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}-32x+64=4\left(x^{2}-7x\right)
Calculate \sqrt{x^{2}-7x} to the power of 2 and get x^{2}-7x.
4x^{2}-32x+64=4x^{2}-28x
Use the distributive property to multiply 4 by x^{2}-7x.
4x^{2}-32x+64-4x^{2}=-28x
Subtract 4x^{2} from both sides.
-32x+64=-28x
Combine 4x^{2} and -4x^{2} to get 0.
-32x+64+28x=0
Add 28x to both sides.
-4x+64=0
Combine -32x and 28x to get -4x.
-4x=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-64}{-4}
Divide both sides by -4.
x=16
Divide -64 by -4 to get 16.
2\times 16-8=2\sqrt{16^{2}-7\times 16}
Substitute 16 for x in the equation 2x-8=2\sqrt{x^{2}-7x}.
24=24
Simplify. The value x=16 satisfies the equation.
x=16
Equation 2x-8=2\sqrt{x^{2}-7x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}