Solve for x
x = -\frac{31}{10} = -3\frac{1}{10} = -3.1
Graph
Share
Copied to clipboard
6x-18-2\left(2x+8\right)=12x-3
Multiply both sides of the equation by 3.
6x-18-4x-16=12x-3
Use the distributive property to multiply -2 by 2x+8.
2x-18-16=12x-3
Combine 6x and -4x to get 2x.
2x-34=12x-3
Subtract 16 from -18 to get -34.
2x-34-12x=-3
Subtract 12x from both sides.
-10x-34=-3
Combine 2x and -12x to get -10x.
-10x=-3+34
Add 34 to both sides.
-10x=31
Add -3 and 34 to get 31.
x=\frac{31}{-10}
Divide both sides by -10.
x=-\frac{31}{10}
Fraction \frac{31}{-10} can be rewritten as -\frac{31}{10} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}