Solve for x (complex solution)
x=\frac{-\sqrt{146}i+1}{49}\approx 0.020408163-0.246592775i
x=\frac{1+\sqrt{146}i}{49}\approx 0.020408163+0.246592775i
Graph
Share
Copied to clipboard
-49x^{2}+2x=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-49x^{2}+2x-3=3-3
Subtract 3 from both sides of the equation.
-49x^{2}+2x-3=0
Subtracting 3 from itself leaves 0.
x=\frac{-2±\sqrt{2^{2}-4\left(-49\right)\left(-3\right)}}{2\left(-49\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -49 for a, 2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-49\right)\left(-3\right)}}{2\left(-49\right)}
Square 2.
x=\frac{-2±\sqrt{4+196\left(-3\right)}}{2\left(-49\right)}
Multiply -4 times -49.
x=\frac{-2±\sqrt{4-588}}{2\left(-49\right)}
Multiply 196 times -3.
x=\frac{-2±\sqrt{-584}}{2\left(-49\right)}
Add 4 to -588.
x=\frac{-2±2\sqrt{146}i}{2\left(-49\right)}
Take the square root of -584.
x=\frac{-2±2\sqrt{146}i}{-98}
Multiply 2 times -49.
x=\frac{-2+2\sqrt{146}i}{-98}
Now solve the equation x=\frac{-2±2\sqrt{146}i}{-98} when ± is plus. Add -2 to 2i\sqrt{146}.
x=\frac{-\sqrt{146}i+1}{49}
Divide -2+2i\sqrt{146} by -98.
x=\frac{-2\sqrt{146}i-2}{-98}
Now solve the equation x=\frac{-2±2\sqrt{146}i}{-98} when ± is minus. Subtract 2i\sqrt{146} from -2.
x=\frac{1+\sqrt{146}i}{49}
Divide -2-2i\sqrt{146} by -98.
x=\frac{-\sqrt{146}i+1}{49} x=\frac{1+\sqrt{146}i}{49}
The equation is now solved.
-49x^{2}+2x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-49x^{2}+2x}{-49}=\frac{3}{-49}
Divide both sides by -49.
x^{2}+\frac{2}{-49}x=\frac{3}{-49}
Dividing by -49 undoes the multiplication by -49.
x^{2}-\frac{2}{49}x=\frac{3}{-49}
Divide 2 by -49.
x^{2}-\frac{2}{49}x=-\frac{3}{49}
Divide 3 by -49.
x^{2}-\frac{2}{49}x+\left(-\frac{1}{49}\right)^{2}=-\frac{3}{49}+\left(-\frac{1}{49}\right)^{2}
Divide -\frac{2}{49}, the coefficient of the x term, by 2 to get -\frac{1}{49}. Then add the square of -\frac{1}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{49}x+\frac{1}{2401}=-\frac{3}{49}+\frac{1}{2401}
Square -\frac{1}{49} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{49}x+\frac{1}{2401}=-\frac{146}{2401}
Add -\frac{3}{49} to \frac{1}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{49}\right)^{2}=-\frac{146}{2401}
Factor x^{2}-\frac{2}{49}x+\frac{1}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{49}\right)^{2}}=\sqrt{-\frac{146}{2401}}
Take the square root of both sides of the equation.
x-\frac{1}{49}=\frac{\sqrt{146}i}{49} x-\frac{1}{49}=-\frac{\sqrt{146}i}{49}
Simplify.
x=\frac{1+\sqrt{146}i}{49} x=\frac{-\sqrt{146}i+1}{49}
Add \frac{1}{49} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}