Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+2x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
Square 2.
x=\frac{-2±\sqrt{4+12\left(-4\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-2±\sqrt{4-48}}{2\left(-3\right)}
Multiply 12 times -4.
x=\frac{-2±\sqrt{-44}}{2\left(-3\right)}
Add 4 to -48.
x=\frac{-2±2\sqrt{11}i}{2\left(-3\right)}
Take the square root of -44.
x=\frac{-2±2\sqrt{11}i}{-6}
Multiply 2 times -3.
x=\frac{-2+2\sqrt{11}i}{-6}
Now solve the equation x=\frac{-2±2\sqrt{11}i}{-6} when ± is plus. Add -2 to 2i\sqrt{11}.
x=\frac{-\sqrt{11}i+1}{3}
Divide -2+2i\sqrt{11} by -6.
x=\frac{-2\sqrt{11}i-2}{-6}
Now solve the equation x=\frac{-2±2\sqrt{11}i}{-6} when ± is minus. Subtract 2i\sqrt{11} from -2.
x=\frac{1+\sqrt{11}i}{3}
Divide -2-2i\sqrt{11} by -6.
x=\frac{-\sqrt{11}i+1}{3} x=\frac{1+\sqrt{11}i}{3}
The equation is now solved.
-3x^{2}+2x-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+2x-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
-3x^{2}+2x=-\left(-4\right)
Subtracting -4 from itself leaves 0.
-3x^{2}+2x=4
Subtract -4 from 0.
\frac{-3x^{2}+2x}{-3}=\frac{4}{-3}
Divide both sides by -3.
x^{2}+\frac{2}{-3}x=\frac{4}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{2}{3}x=\frac{4}{-3}
Divide 2 by -3.
x^{2}-\frac{2}{3}x=-\frac{4}{3}
Divide 4 by -3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{4}{3}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{4}{3}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{11}{9}
Add -\frac{4}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=-\frac{11}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{11}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{\sqrt{11}i}{3} x-\frac{1}{3}=-\frac{\sqrt{11}i}{3}
Simplify.
x=\frac{1+\sqrt{11}i}{3} x=\frac{-\sqrt{11}i+1}{3}
Add \frac{1}{3} to both sides of the equation.