Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-\left(x^{2}+2x+1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x-x^{2}-2x-1=5
To find the opposite of x^{2}+2x+1, find the opposite of each term.
-x^{2}-1=5
Combine 2x and -2x to get 0.
-x^{2}=5+1
Add 1 to both sides.
-x^{2}=6
Add 5 and 1 to get 6.
x^{2}=-6
Divide both sides by -1.
x=\sqrt{6}i x=-\sqrt{6}i
The equation is now solved.
2x-\left(x^{2}+2x+1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x-x^{2}-2x-1=5
To find the opposite of x^{2}+2x+1, find the opposite of each term.
-x^{2}-1=5
Combine 2x and -2x to get 0.
-x^{2}-1-5=0
Subtract 5 from both sides.
-x^{2}-6=0
Subtract 5 from -1 to get -6.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-6\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-24}}{2\left(-1\right)}
Multiply 4 times -6.
x=\frac{0±2\sqrt{6}i}{2\left(-1\right)}
Take the square root of -24.
x=\frac{0±2\sqrt{6}i}{-2}
Multiply 2 times -1.
x=-\sqrt{6}i
Now solve the equation x=\frac{0±2\sqrt{6}i}{-2} when ± is plus.
x=\sqrt{6}i
Now solve the equation x=\frac{0±2\sqrt{6}i}{-2} when ± is minus.
x=-\sqrt{6}i x=\sqrt{6}i
The equation is now solved.