Solve for x
x>-2
Graph
Share
Copied to clipboard
2x-5-\left(-3x\right)<3\left(3\left(x+3\right)-2\left(2-x\right)\right)
To find the opposite of 5-3x, find the opposite of each term.
2x-5+3x<3\left(3\left(x+3\right)-2\left(2-x\right)\right)
The opposite of -3x is 3x.
5x-5<3\left(3\left(x+3\right)-2\left(2-x\right)\right)
Combine 2x and 3x to get 5x.
5x-5<3\left(3x+9-2\left(2-x\right)\right)
Use the distributive property to multiply 3 by x+3.
5x-5<3\left(3x+9-4+2x\right)
Use the distributive property to multiply -2 by 2-x.
5x-5<3\left(3x+5+2x\right)
Subtract 4 from 9 to get 5.
5x-5<3\left(5x+5\right)
Combine 3x and 2x to get 5x.
5x-5<15x+15
Use the distributive property to multiply 3 by 5x+5.
5x-5-15x<15
Subtract 15x from both sides.
-10x-5<15
Combine 5x and -15x to get -10x.
-10x<15+5
Add 5 to both sides.
-10x<20
Add 15 and 5 to get 20.
x>\frac{20}{-10}
Divide both sides by -10. Since -10 is negative, the inequality direction is changed.
x>-2
Divide 20 by -10 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}