Solve for x
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graph
Share
Copied to clipboard
6\left(2x-\left(\frac{x+2}{3}-\frac{x-1}{2}\right)\right)+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
6\left(2x-\left(\frac{2\left(x+2\right)}{6}-\frac{3\left(x-1\right)}{6}\right)\right)+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{x+2}{3} times \frac{2}{2}. Multiply \frac{x-1}{2} times \frac{3}{3}.
6\left(2x-\frac{2\left(x+2\right)-3\left(x-1\right)}{6}\right)+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
Since \frac{2\left(x+2\right)}{6} and \frac{3\left(x-1\right)}{6} have the same denominator, subtract them by subtracting their numerators.
6\left(2x-\frac{2x+4-3x+3}{6}\right)+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
Do the multiplications in 2\left(x+2\right)-3\left(x-1\right).
6\left(2x-\frac{-x+7}{6}\right)+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
Combine like terms in 2x+4-3x+3.
12x+6\left(-\frac{-x+7}{6}\right)+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
Use the distributive property to multiply 6 by 2x-\frac{-x+7}{6}.
12x+\frac{-6\left(-x+7\right)}{6}+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
Express 6\left(-\frac{-x+7}{6}\right) as a single fraction.
12x-\left(-x+7\right)+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
Cancel out 6 and 6.
12x-\left(-x\right)-7+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
To find the opposite of -x+7, find the opposite of each term.
12x+x-7+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
The opposite of -x is x.
13x-7+9\left(1-x\right)=3\left(2x-3\right)+1\left(x+4\right)
Combine 12x and x to get 13x.
13x-7+9-9x=3\left(2x-3\right)+1\left(x+4\right)
Use the distributive property to multiply 9 by 1-x.
13x+2-9x=3\left(2x-3\right)+1\left(x+4\right)
Add -7 and 9 to get 2.
4x+2=3\left(2x-3\right)+1\left(x+4\right)
Combine 13x and -9x to get 4x.
4x+2=6x-9+1\left(x+4\right)
Use the distributive property to multiply 3 by 2x-3.
4x+2=6x-9+x+4
Use the distributive property to multiply 1 by x+4.
4x+2=7x-9+4
Combine 6x and x to get 7x.
4x+2=7x-5
Add -9 and 4 to get -5.
4x+2-7x=-5
Subtract 7x from both sides.
-3x+2=-5
Combine 4x and -7x to get -3x.
-3x=-5-2
Subtract 2 from both sides.
-3x=-7
Subtract 2 from -5 to get -7.
x=\frac{-7}{-3}
Divide both sides by -3.
x=\frac{7}{3}
Fraction \frac{-7}{-3} can be simplified to \frac{7}{3} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}