Solve for x
x = \frac{17}{4} = 4\frac{1}{4} = 4.25
Graph
Share
Copied to clipboard
4x-\left(x-\frac{1}{2}\right)=4x-6\left(x-\frac{x+3}{2}\right)
Multiply both sides of the equation by 2.
4x-x-\left(-\frac{1}{2}\right)=4x-6\left(x-\frac{x+3}{2}\right)
To find the opposite of x-\frac{1}{2}, find the opposite of each term.
4x-x+\frac{1}{2}=4x-6\left(x-\frac{x+3}{2}\right)
The opposite of -\frac{1}{2} is \frac{1}{2}.
3x+\frac{1}{2}=4x-6\left(x-\frac{x+3}{2}\right)
Combine 4x and -x to get 3x.
3x+\frac{1}{2}=4x-6\left(x-\left(\frac{1}{2}x+\frac{3}{2}\right)\right)
Divide each term of x+3 by 2 to get \frac{1}{2}x+\frac{3}{2}.
3x+\frac{1}{2}=4x-6\left(x-\frac{1}{2}x-\frac{3}{2}\right)
To find the opposite of \frac{1}{2}x+\frac{3}{2}, find the opposite of each term.
3x+\frac{1}{2}=4x-6\left(\frac{1}{2}x-\frac{3}{2}\right)
Combine x and -\frac{1}{2}x to get \frac{1}{2}x.
3x+\frac{1}{2}=4x-6\times \frac{1}{2}x-6\left(-\frac{3}{2}\right)
Use the distributive property to multiply -6 by \frac{1}{2}x-\frac{3}{2}.
3x+\frac{1}{2}=4x+\frac{-6}{2}x-6\left(-\frac{3}{2}\right)
Multiply -6 and \frac{1}{2} to get \frac{-6}{2}.
3x+\frac{1}{2}=4x-3x-6\left(-\frac{3}{2}\right)
Divide -6 by 2 to get -3.
3x+\frac{1}{2}=4x-3x+\frac{-6\left(-3\right)}{2}
Express -6\left(-\frac{3}{2}\right) as a single fraction.
3x+\frac{1}{2}=4x-3x+\frac{18}{2}
Multiply -6 and -3 to get 18.
3x+\frac{1}{2}=4x-3x+9
Divide 18 by 2 to get 9.
3x+\frac{1}{2}=x+9
Combine 4x and -3x to get x.
3x+\frac{1}{2}-x=9
Subtract x from both sides.
2x+\frac{1}{2}=9
Combine 3x and -x to get 2x.
2x=9-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
2x=\frac{18}{2}-\frac{1}{2}
Convert 9 to fraction \frac{18}{2}.
2x=\frac{18-1}{2}
Since \frac{18}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
2x=\frac{17}{2}
Subtract 1 from 18 to get 17.
x=\frac{\frac{17}{2}}{2}
Divide both sides by 2.
x=\frac{17}{2\times 2}
Express \frac{\frac{17}{2}}{2} as a single fraction.
x=\frac{17}{4}
Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}