Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=4
Graph
Share
Copied to clipboard
2x\left(x+3\right)-7=7\left(x+3\right)
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by x+3.
2x^{2}+6x-7=7\left(x+3\right)
Use the distributive property to multiply 2x by x+3.
2x^{2}+6x-7=7x+21
Use the distributive property to multiply 7 by x+3.
2x^{2}+6x-7-7x=21
Subtract 7x from both sides.
2x^{2}-x-7=21
Combine 6x and -7x to get -x.
2x^{2}-x-7-21=0
Subtract 21 from both sides.
2x^{2}-x-28=0
Subtract 21 from -7 to get -28.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-28\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -1 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-28\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-1\right)±\sqrt{1+224}}{2\times 2}
Multiply -8 times -28.
x=\frac{-\left(-1\right)±\sqrt{225}}{2\times 2}
Add 1 to 224.
x=\frac{-\left(-1\right)±15}{2\times 2}
Take the square root of 225.
x=\frac{1±15}{2\times 2}
The opposite of -1 is 1.
x=\frac{1±15}{4}
Multiply 2 times 2.
x=\frac{16}{4}
Now solve the equation x=\frac{1±15}{4} when ± is plus. Add 1 to 15.
x=4
Divide 16 by 4.
x=-\frac{14}{4}
Now solve the equation x=\frac{1±15}{4} when ± is minus. Subtract 15 from 1.
x=-\frac{7}{2}
Reduce the fraction \frac{-14}{4} to lowest terms by extracting and canceling out 2.
x=4 x=-\frac{7}{2}
The equation is now solved.
2x\left(x+3\right)-7=7\left(x+3\right)
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by x+3.
2x^{2}+6x-7=7\left(x+3\right)
Use the distributive property to multiply 2x by x+3.
2x^{2}+6x-7=7x+21
Use the distributive property to multiply 7 by x+3.
2x^{2}+6x-7-7x=21
Subtract 7x from both sides.
2x^{2}-x-7=21
Combine 6x and -7x to get -x.
2x^{2}-x=21+7
Add 7 to both sides.
2x^{2}-x=28
Add 21 and 7 to get 28.
\frac{2x^{2}-x}{2}=\frac{28}{2}
Divide both sides by 2.
x^{2}-\frac{1}{2}x=\frac{28}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{1}{2}x=14
Divide 28 by 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=14+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=14+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{225}{16}
Add 14 to \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{225}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{15}{4} x-\frac{1}{4}=-\frac{15}{4}
Simplify.
x=4 x=-\frac{7}{2}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}