Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

30x-3\left(2x+4\right)=2x\times 9x-3\left(x+1\right)
Multiply both sides of the equation by 15, the least common multiple of 5,3.
30x-6x-12=2x\times 9x-3\left(x+1\right)
Use the distributive property to multiply -3 by 2x+4.
24x-12=2x\times 9x-3\left(x+1\right)
Combine 30x and -6x to get 24x.
24x-12=2x^{2}\times 9-3\left(x+1\right)
Multiply x and x to get x^{2}.
24x-12=18x^{2}-3\left(x+1\right)
Multiply 2 and 9 to get 18.
24x-12=18x^{2}-3x-3
Use the distributive property to multiply -3 by x+1.
24x-12-18x^{2}=-3x-3
Subtract 18x^{2} from both sides.
24x-12-18x^{2}+3x=-3
Add 3x to both sides.
27x-12-18x^{2}=-3
Combine 24x and 3x to get 27x.
27x-12-18x^{2}+3=0
Add 3 to both sides.
27x-9-18x^{2}=0
Add -12 and 3 to get -9.
-18x^{2}+27x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-27±\sqrt{27^{2}-4\left(-18\right)\left(-9\right)}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, 27 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\left(-18\right)\left(-9\right)}}{2\left(-18\right)}
Square 27.
x=\frac{-27±\sqrt{729+72\left(-9\right)}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-27±\sqrt{729-648}}{2\left(-18\right)}
Multiply 72 times -9.
x=\frac{-27±\sqrt{81}}{2\left(-18\right)}
Add 729 to -648.
x=\frac{-27±9}{2\left(-18\right)}
Take the square root of 81.
x=\frac{-27±9}{-36}
Multiply 2 times -18.
x=-\frac{18}{-36}
Now solve the equation x=\frac{-27±9}{-36} when ± is plus. Add -27 to 9.
x=\frac{1}{2}
Reduce the fraction \frac{-18}{-36} to lowest terms by extracting and canceling out 18.
x=-\frac{36}{-36}
Now solve the equation x=\frac{-27±9}{-36} when ± is minus. Subtract 9 from -27.
x=1
Divide -36 by -36.
x=\frac{1}{2} x=1
The equation is now solved.
30x-3\left(2x+4\right)=2x\times 9x-3\left(x+1\right)
Multiply both sides of the equation by 15, the least common multiple of 5,3.
30x-6x-12=2x\times 9x-3\left(x+1\right)
Use the distributive property to multiply -3 by 2x+4.
24x-12=2x\times 9x-3\left(x+1\right)
Combine 30x and -6x to get 24x.
24x-12=2x^{2}\times 9-3\left(x+1\right)
Multiply x and x to get x^{2}.
24x-12=18x^{2}-3\left(x+1\right)
Multiply 2 and 9 to get 18.
24x-12=18x^{2}-3x-3
Use the distributive property to multiply -3 by x+1.
24x-12-18x^{2}=-3x-3
Subtract 18x^{2} from both sides.
24x-12-18x^{2}+3x=-3
Add 3x to both sides.
27x-12-18x^{2}=-3
Combine 24x and 3x to get 27x.
27x-18x^{2}=-3+12
Add 12 to both sides.
27x-18x^{2}=9
Add -3 and 12 to get 9.
-18x^{2}+27x=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-18x^{2}+27x}{-18}=\frac{9}{-18}
Divide both sides by -18.
x^{2}+\frac{27}{-18}x=\frac{9}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}-\frac{3}{2}x=\frac{9}{-18}
Reduce the fraction \frac{27}{-18} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{3}{2}x=-\frac{1}{2}
Reduce the fraction \frac{9}{-18} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{16}
Add -\frac{1}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{1}{4} x-\frac{3}{4}=-\frac{1}{4}
Simplify.
x=1 x=\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.