Solve for x
x=-\frac{5}{13}\approx -0.384615385
Graph
Share
Copied to clipboard
2x-\frac{1}{2}\left(x-\frac{1}{2}x-\frac{1}{2}\left(-1\right)\right)=\frac{2}{3}\left(x-1\right)
Use the distributive property to multiply -\frac{1}{2} by x-1.
2x-\frac{1}{2}\left(x-\frac{1}{2}x+\frac{1}{2}\right)=\frac{2}{3}\left(x-1\right)
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
2x-\frac{1}{2}\left(\frac{1}{2}x+\frac{1}{2}\right)=\frac{2}{3}\left(x-1\right)
Combine x and -\frac{1}{2}x to get \frac{1}{2}x.
2x-\frac{1}{2}\times \frac{1}{2}x-\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Use the distributive property to multiply -\frac{1}{2} by \frac{1}{2}x+\frac{1}{2}.
2x+\frac{-1}{2\times 2}x-\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Multiply -\frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
2x+\frac{-1}{4}x-\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Do the multiplications in the fraction \frac{-1}{2\times 2}.
2x-\frac{1}{4}x-\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
2x-\frac{1}{4}x+\frac{-1}{2\times 2}=\frac{2}{3}\left(x-1\right)
Multiply -\frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
2x-\frac{1}{4}x+\frac{-1}{4}=\frac{2}{3}\left(x-1\right)
Do the multiplications in the fraction \frac{-1}{2\times 2}.
2x-\frac{1}{4}x-\frac{1}{4}=\frac{2}{3}\left(x-1\right)
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{7}{4}x-\frac{1}{4}=\frac{2}{3}\left(x-1\right)
Combine 2x and -\frac{1}{4}x to get \frac{7}{4}x.
\frac{7}{4}x-\frac{1}{4}=\frac{2}{3}x+\frac{2}{3}\left(-1\right)
Use the distributive property to multiply \frac{2}{3} by x-1.
\frac{7}{4}x-\frac{1}{4}=\frac{2}{3}x-\frac{2}{3}
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{7}{4}x-\frac{1}{4}-\frac{2}{3}x=-\frac{2}{3}
Subtract \frac{2}{3}x from both sides.
\frac{13}{12}x-\frac{1}{4}=-\frac{2}{3}
Combine \frac{7}{4}x and -\frac{2}{3}x to get \frac{13}{12}x.
\frac{13}{12}x=-\frac{2}{3}+\frac{1}{4}
Add \frac{1}{4} to both sides.
\frac{13}{12}x=-\frac{8}{12}+\frac{3}{12}
Least common multiple of 3 and 4 is 12. Convert -\frac{2}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{13}{12}x=\frac{-8+3}{12}
Since -\frac{8}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{13}{12}x=-\frac{5}{12}
Add -8 and 3 to get -5.
x=-\frac{5}{12}\times \frac{12}{13}
Multiply both sides by \frac{12}{13}, the reciprocal of \frac{13}{12}.
x=\frac{-5\times 12}{12\times 13}
Multiply -\frac{5}{12} times \frac{12}{13} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-5}{13}
Cancel out 12 in both numerator and denominator.
x=-\frac{5}{13}
Fraction \frac{-5}{13} can be rewritten as -\frac{5}{13} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}