Solve for x
x = \frac{20}{7} = 2\frac{6}{7} \approx 2.857142857
Graph
Share
Copied to clipboard
2x^{2}-8x-\left(2x+3\right)\left(x-4\right)=4x\left(2x-3\right)-8\left(1-x\right)^{2}
Use the distributive property to multiply 2x by x-4.
2x^{2}-8x-\left(2x^{2}-5x-12\right)=4x\left(2x-3\right)-8\left(1-x\right)^{2}
Use the distributive property to multiply 2x+3 by x-4 and combine like terms.
2x^{2}-8x-2x^{2}+5x+12=4x\left(2x-3\right)-8\left(1-x\right)^{2}
To find the opposite of 2x^{2}-5x-12, find the opposite of each term.
-8x+5x+12=4x\left(2x-3\right)-8\left(1-x\right)^{2}
Combine 2x^{2} and -2x^{2} to get 0.
-3x+12=4x\left(2x-3\right)-8\left(1-x\right)^{2}
Combine -8x and 5x to get -3x.
-3x+12=8x^{2}-12x-8\left(1-x\right)^{2}
Use the distributive property to multiply 4x by 2x-3.
-3x+12=8x^{2}-12x-8\left(1-2x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
-3x+12=8x^{2}-12x-8+16x-8x^{2}
Use the distributive property to multiply -8 by 1-2x+x^{2}.
-3x+12=8x^{2}+4x-8-8x^{2}
Combine -12x and 16x to get 4x.
-3x+12=4x-8
Combine 8x^{2} and -8x^{2} to get 0.
-3x+12-4x=-8
Subtract 4x from both sides.
-7x+12=-8
Combine -3x and -4x to get -7x.
-7x=-8-12
Subtract 12 from both sides.
-7x=-20
Subtract 12 from -8 to get -20.
x=\frac{-20}{-7}
Divide both sides by -7.
x=\frac{20}{7}
Fraction \frac{-20}{-7} can be simplified to \frac{20}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}