Solve for x
x=2
x=3
Graph
Share
Copied to clipboard
2x^{2}-6x-4x+12=0
Use the distributive property to multiply 2x by x-3.
2x^{2}-10x+12=0
Combine -6x and -4x to get -10x.
x^{2}-5x+6=0
Divide both sides by 2.
a+b=-5 ab=1\times 6=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
-1,-6 -2,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 6.
-1-6=-7 -2-3=-5
Calculate the sum for each pair.
a=-3 b=-2
The solution is the pair that gives sum -5.
\left(x^{2}-3x\right)+\left(-2x+6\right)
Rewrite x^{2}-5x+6 as \left(x^{2}-3x\right)+\left(-2x+6\right).
x\left(x-3\right)-2\left(x-3\right)
Factor out x in the first and -2 in the second group.
\left(x-3\right)\left(x-2\right)
Factor out common term x-3 by using distributive property.
x=3 x=2
To find equation solutions, solve x-3=0 and x-2=0.
2x^{2}-6x-4x+12=0
Use the distributive property to multiply 2x by x-3.
2x^{2}-10x+12=0
Combine -6x and -4x to get -10x.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 12}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -10 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 12}}{2\times 2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-8\times 12}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2\times 2}
Multiply -8 times 12.
x=\frac{-\left(-10\right)±\sqrt{4}}{2\times 2}
Add 100 to -96.
x=\frac{-\left(-10\right)±2}{2\times 2}
Take the square root of 4.
x=\frac{10±2}{2\times 2}
The opposite of -10 is 10.
x=\frac{10±2}{4}
Multiply 2 times 2.
x=\frac{12}{4}
Now solve the equation x=\frac{10±2}{4} when ± is plus. Add 10 to 2.
x=3
Divide 12 by 4.
x=\frac{8}{4}
Now solve the equation x=\frac{10±2}{4} when ± is minus. Subtract 2 from 10.
x=2
Divide 8 by 4.
x=3 x=2
The equation is now solved.
2x^{2}-6x-4x+12=0
Use the distributive property to multiply 2x by x-3.
2x^{2}-10x+12=0
Combine -6x and -4x to get -10x.
2x^{2}-10x=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-10x}{2}=-\frac{12}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{10}{2}\right)x=-\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-5x=-\frac{12}{2}
Divide -10 by 2.
x^{2}-5x=-6
Divide -12 by 2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{1}{4}
Add -6 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{1}{2} x-\frac{5}{2}=-\frac{1}{2}
Simplify.
x=3 x=2
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}