Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+12x=12
Use the distributive property to multiply 2x by x+6.
2x^{2}+12x-12=0
Subtract 12 from both sides.
x=\frac{-12±\sqrt{12^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 12 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 2\left(-12\right)}}{2\times 2}
Square 12.
x=\frac{-12±\sqrt{144-8\left(-12\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-12±\sqrt{144+96}}{2\times 2}
Multiply -8 times -12.
x=\frac{-12±\sqrt{240}}{2\times 2}
Add 144 to 96.
x=\frac{-12±4\sqrt{15}}{2\times 2}
Take the square root of 240.
x=\frac{-12±4\sqrt{15}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{15}-12}{4}
Now solve the equation x=\frac{-12±4\sqrt{15}}{4} when ± is plus. Add -12 to 4\sqrt{15}.
x=\sqrt{15}-3
Divide -12+4\sqrt{15} by 4.
x=\frac{-4\sqrt{15}-12}{4}
Now solve the equation x=\frac{-12±4\sqrt{15}}{4} when ± is minus. Subtract 4\sqrt{15} from -12.
x=-\sqrt{15}-3
Divide -12-4\sqrt{15} by 4.
x=\sqrt{15}-3 x=-\sqrt{15}-3
The equation is now solved.
2x^{2}+12x=12
Use the distributive property to multiply 2x by x+6.
\frac{2x^{2}+12x}{2}=\frac{12}{2}
Divide both sides by 2.
x^{2}+\frac{12}{2}x=\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+6x=\frac{12}{2}
Divide 12 by 2.
x^{2}+6x=6
Divide 12 by 2.
x^{2}+6x+3^{2}=6+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=6+9
Square 3.
x^{2}+6x+9=15
Add 6 to 9.
\left(x+3\right)^{2}=15
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x+3=\sqrt{15} x+3=-\sqrt{15}
Simplify.
x=\sqrt{15}-3 x=-\sqrt{15}-3
Subtract 3 from both sides of the equation.
2x^{2}+12x=12
Use the distributive property to multiply 2x by x+6.
2x^{2}+12x-12=0
Subtract 12 from both sides.
x=\frac{-12±\sqrt{12^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 12 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 2\left(-12\right)}}{2\times 2}
Square 12.
x=\frac{-12±\sqrt{144-8\left(-12\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-12±\sqrt{144+96}}{2\times 2}
Multiply -8 times -12.
x=\frac{-12±\sqrt{240}}{2\times 2}
Add 144 to 96.
x=\frac{-12±4\sqrt{15}}{2\times 2}
Take the square root of 240.
x=\frac{-12±4\sqrt{15}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{15}-12}{4}
Now solve the equation x=\frac{-12±4\sqrt{15}}{4} when ± is plus. Add -12 to 4\sqrt{15}.
x=\sqrt{15}-3
Divide -12+4\sqrt{15} by 4.
x=\frac{-4\sqrt{15}-12}{4}
Now solve the equation x=\frac{-12±4\sqrt{15}}{4} when ± is minus. Subtract 4\sqrt{15} from -12.
x=-\sqrt{15}-3
Divide -12-4\sqrt{15} by 4.
x=\sqrt{15}-3 x=-\sqrt{15}-3
The equation is now solved.
2x^{2}+12x=12
Use the distributive property to multiply 2x by x+6.
\frac{2x^{2}+12x}{2}=\frac{12}{2}
Divide both sides by 2.
x^{2}+\frac{12}{2}x=\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+6x=\frac{12}{2}
Divide 12 by 2.
x^{2}+6x=6
Divide 12 by 2.
x^{2}+6x+3^{2}=6+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=6+9
Square 3.
x^{2}+6x+9=15
Add 6 to 9.
\left(x+3\right)^{2}=15
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x+3=\sqrt{15} x+3=-\sqrt{15}
Simplify.
x=\sqrt{15}-3 x=-\sqrt{15}-3
Subtract 3 from both sides of the equation.