Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{2y-z}{8y+6z-1}\text{, }&y\neq -\frac{3z}{4}+\frac{1}{8}\\x\in \mathrm{C}\text{, }&y=\frac{1}{20}\text{ and }z=\frac{1}{10}\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{6xz-x-z}{2\left(4x+1\right)}\text{, }&x\neq -\frac{1}{4}\\y\in \mathrm{C}\text{, }&z=\frac{1}{10}\text{ and }x=-\frac{1}{4}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{2y-z}{8y+6z-1}\text{, }&y\neq -\frac{3z}{4}+\frac{1}{8}\\x\in \mathrm{R}\text{, }&y=\frac{1}{20}\text{ and }z=\frac{1}{10}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{6xz-x-z}{2\left(4x+1\right)}\text{, }&x\neq -\frac{1}{4}\\y\in \mathrm{R}\text{, }&z=\frac{1}{10}\text{ and }x=-\frac{1}{4}\end{matrix}\right.
Share
Copied to clipboard
8xy+6xz=1x-2y+1z
Use the distributive property to multiply 2x by 4y+3z.
8xy+6xz-x=-2y+1z
Subtract 1x from both sides.
8xy+6xz-x=-2y+z
Reorder the terms.
\left(8y+6z-1\right)x=-2y+z
Combine all terms containing x.
\left(8y+6z-1\right)x=z-2y
The equation is in standard form.
\frac{\left(8y+6z-1\right)x}{8y+6z-1}=\frac{z-2y}{8y+6z-1}
Divide both sides by 8y+6z-1.
x=\frac{z-2y}{8y+6z-1}
Dividing by 8y+6z-1 undoes the multiplication by 8y+6z-1.
8xy+6xz=1x-2y+1z
Use the distributive property to multiply 2x by 4y+3z.
8xy+6xz+2y=1x+1z
Add 2y to both sides.
8xy+2y=1x+1z-6xz
Subtract 6xz from both sides.
8xy+2y=-6xz+x+z
Reorder the terms.
\left(8x+2\right)y=-6xz+x+z
Combine all terms containing y.
\left(8x+2\right)y=z+x-6xz
The equation is in standard form.
\frac{\left(8x+2\right)y}{8x+2}=\frac{z+x-6xz}{8x+2}
Divide both sides by 8x+2.
y=\frac{z+x-6xz}{8x+2}
Dividing by 8x+2 undoes the multiplication by 8x+2.
y=\frac{z+x-6xz}{2\left(4x+1\right)}
Divide -6xz+x+z by 8x+2.
8xy+6xz=1x-2y+1z
Use the distributive property to multiply 2x by 4y+3z.
8xy+6xz-x=-2y+1z
Subtract 1x from both sides.
8xy+6xz-x=-2y+z
Reorder the terms.
\left(8y+6z-1\right)x=-2y+z
Combine all terms containing x.
\left(8y+6z-1\right)x=z-2y
The equation is in standard form.
\frac{\left(8y+6z-1\right)x}{8y+6z-1}=\frac{z-2y}{8y+6z-1}
Divide both sides by 8y+6z-1.
x=\frac{z-2y}{8y+6z-1}
Dividing by 8y+6z-1 undoes the multiplication by 8y+6z-1.
8xy+6xz=1x-2y+1z
Use the distributive property to multiply 2x by 4y+3z.
8xy+6xz+2y=1x+1z
Add 2y to both sides.
8xy+2y=1x+1z-6xz
Subtract 6xz from both sides.
8xy+2y=-6xz+x+z
Reorder the terms.
\left(8x+2\right)y=-6xz+x+z
Combine all terms containing y.
\left(8x+2\right)y=z+x-6xz
The equation is in standard form.
\frac{\left(8x+2\right)y}{8x+2}=\frac{z+x-6xz}{8x+2}
Divide both sides by 8x+2.
y=\frac{z+x-6xz}{8x+2}
Dividing by 8x+2 undoes the multiplication by 8x+2.
y=\frac{z+x-6xz}{2\left(4x+1\right)}
Divide -6xz+x+z by 8x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}