Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+10x=\left(x-1\right)\left(2x+5\right)
Use the distributive property to multiply 2x by 2x+5.
4x^{2}+10x=2x^{2}+3x-5
Use the distributive property to multiply x-1 by 2x+5 and combine like terms.
4x^{2}+10x-2x^{2}=3x-5
Subtract 2x^{2} from both sides.
2x^{2}+10x=3x-5
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}+10x-3x=-5
Subtract 3x from both sides.
2x^{2}+7x=-5
Combine 10x and -3x to get 7x.
2x^{2}+7x+5=0
Add 5 to both sides.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 7 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
Square 7.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
Multiply -8 times 5.
x=\frac{-7±\sqrt{9}}{2\times 2}
Add 49 to -40.
x=\frac{-7±3}{2\times 2}
Take the square root of 9.
x=\frac{-7±3}{4}
Multiply 2 times 2.
x=-\frac{4}{4}
Now solve the equation x=\frac{-7±3}{4} when ± is plus. Add -7 to 3.
x=-1
Divide -4 by 4.
x=-\frac{10}{4}
Now solve the equation x=\frac{-7±3}{4} when ± is minus. Subtract 3 from -7.
x=-\frac{5}{2}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x=-1 x=-\frac{5}{2}
The equation is now solved.
4x^{2}+10x=\left(x-1\right)\left(2x+5\right)
Use the distributive property to multiply 2x by 2x+5.
4x^{2}+10x=2x^{2}+3x-5
Use the distributive property to multiply x-1 by 2x+5 and combine like terms.
4x^{2}+10x-2x^{2}=3x-5
Subtract 2x^{2} from both sides.
2x^{2}+10x=3x-5
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}+10x-3x=-5
Subtract 3x from both sides.
2x^{2}+7x=-5
Combine 10x and -3x to get 7x.
\frac{2x^{2}+7x}{2}=-\frac{5}{2}
Divide both sides by 2.
x^{2}+\frac{7}{2}x=-\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
Add -\frac{5}{2} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{3}{4} x+\frac{7}{4}=-\frac{3}{4}
Simplify.
x=-1 x=-\frac{5}{2}
Subtract \frac{7}{4} from both sides of the equation.