Solve for x (complex solution)
x=1
Solve for x
x=1
Denominator(n)\text{bmod}2=1
Solve for n (complex solution)
n\in \mathrm{C}
x=1
Solve for n
n\in \mathrm{R}
x=1\text{ and }Denominator(n)\text{bmod}2=1
Graph
Share
Copied to clipboard
2x\left(-2\right)^{n}=-\left(-2\right)^{n+1}
Subtract \left(-2\right)^{n+1} from both sides. Anything subtracted from zero gives its negation.
2\left(-2\right)^{n}x=-\left(-2\right)^{n+1}
The equation is in standard form.
\frac{2\left(-2\right)^{n}x}{2\left(-2\right)^{n}}=\frac{2\left(-2\right)^{n}}{2\left(-2\right)^{n}}
Divide both sides by 2\left(-2\right)^{n}.
x=\frac{2\left(-2\right)^{n}}{2\left(-2\right)^{n}}
Dividing by 2\left(-2\right)^{n} undoes the multiplication by 2\left(-2\right)^{n}.
x=1
Divide 2\left(-2\right)^{n} by 2\left(-2\right)^{n}.
2x\left(-2\right)^{n}=-\left(-2\right)^{n+1}
Subtract \left(-2\right)^{n+1} from both sides. Anything subtracted from zero gives its negation.
2\left(-2\right)^{n}x=-\left(-2\right)^{n+1}
The equation is in standard form.
\frac{2\left(-2\right)^{n}x}{2\left(-2\right)^{n}}=\frac{2\left(-2\right)^{n}}{2\left(-2\right)^{n}}
Divide both sides by 2\left(-2\right)^{n}.
x=\frac{2\left(-2\right)^{n}}{2\left(-2\right)^{n}}
Dividing by 2\left(-2\right)^{n} undoes the multiplication by 2\left(-2\right)^{n}.
x=1
Divide 2\left(-2\right)^{n} by 2\left(-2\right)^{n}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}