Evaluate
-\frac{16x}{3}
Expand
-\frac{16x}{3}
Graph
Share
Copied to clipboard
2x\left(-\frac{6+1}{6}-\frac{1\times 2+1}{2}\right)
Multiply 1 and 6 to get 6.
2x\left(-\frac{7}{6}-\frac{1\times 2+1}{2}\right)
Add 6 and 1 to get 7.
2x\left(-\frac{7}{6}-\frac{2+1}{2}\right)
Multiply 1 and 2 to get 2.
2x\left(-\frac{7}{6}-\frac{3}{2}\right)
Add 2 and 1 to get 3.
2x\left(-\frac{7}{6}-\frac{9}{6}\right)
Least common multiple of 6 and 2 is 6. Convert -\frac{7}{6} and \frac{3}{2} to fractions with denominator 6.
2x\times \frac{-7-9}{6}
Since -\frac{7}{6} and \frac{9}{6} have the same denominator, subtract them by subtracting their numerators.
2x\times \frac{-16}{6}
Subtract 9 from -7 to get -16.
2x\left(-\frac{8}{3}\right)
Reduce the fraction \frac{-16}{6} to lowest terms by extracting and canceling out 2.
\frac{2\left(-8\right)}{3}x
Express 2\left(-\frac{8}{3}\right) as a single fraction.
\frac{-16}{3}x
Multiply 2 and -8 to get -16.
-\frac{16}{3}x
Fraction \frac{-16}{3} can be rewritten as -\frac{16}{3} by extracting the negative sign.
2x\left(-\frac{6+1}{6}-\frac{1\times 2+1}{2}\right)
Multiply 1 and 6 to get 6.
2x\left(-\frac{7}{6}-\frac{1\times 2+1}{2}\right)
Add 6 and 1 to get 7.
2x\left(-\frac{7}{6}-\frac{2+1}{2}\right)
Multiply 1 and 2 to get 2.
2x\left(-\frac{7}{6}-\frac{3}{2}\right)
Add 2 and 1 to get 3.
2x\left(-\frac{7}{6}-\frac{9}{6}\right)
Least common multiple of 6 and 2 is 6. Convert -\frac{7}{6} and \frac{3}{2} to fractions with denominator 6.
2x\times \frac{-7-9}{6}
Since -\frac{7}{6} and \frac{9}{6} have the same denominator, subtract them by subtracting their numerators.
2x\times \frac{-16}{6}
Subtract 9 from -7 to get -16.
2x\left(-\frac{8}{3}\right)
Reduce the fraction \frac{-16}{6} to lowest terms by extracting and canceling out 2.
\frac{2\left(-8\right)}{3}x
Express 2\left(-\frac{8}{3}\right) as a single fraction.
\frac{-16}{3}x
Multiply 2 and -8 to get -16.
-\frac{16}{3}x
Fraction \frac{-16}{3} can be rewritten as -\frac{16}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}