Solve for x
x=\sqrt{2}+\sqrt{6}\approx 3.863703305
Graph
Share
Copied to clipboard
2x\sqrt{3}+2x\sqrt{2}-\sqrt{2}\left(3+2x\right)=\sqrt{3}\left(x+\sqrt{2}\right)
Use the distributive property to multiply 2x by \sqrt{3}+\sqrt{2}.
2x\sqrt{3}+2x\sqrt{2}-\left(3\sqrt{2}+2\sqrt{2}x\right)=\sqrt{3}\left(x+\sqrt{2}\right)
Use the distributive property to multiply \sqrt{2} by 3+2x.
2x\sqrt{3}+2x\sqrt{2}-3\sqrt{2}-2\sqrt{2}x=\sqrt{3}\left(x+\sqrt{2}\right)
To find the opposite of 3\sqrt{2}+2\sqrt{2}x, find the opposite of each term.
2x\sqrt{3}-3\sqrt{2}=\sqrt{3}\left(x+\sqrt{2}\right)
Combine 2x\sqrt{2} and -2\sqrt{2}x to get 0.
2x\sqrt{3}-3\sqrt{2}=\sqrt{3}x+\sqrt{3}\sqrt{2}
Use the distributive property to multiply \sqrt{3} by x+\sqrt{2}.
2x\sqrt{3}-3\sqrt{2}=\sqrt{3}x+\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2x\sqrt{3}-3\sqrt{2}-\sqrt{3}x=\sqrt{6}
Subtract \sqrt{3}x from both sides.
x\sqrt{3}-3\sqrt{2}=\sqrt{6}
Combine 2x\sqrt{3} and -\sqrt{3}x to get x\sqrt{3}.
x\sqrt{3}=\sqrt{6}+3\sqrt{2}
Add 3\sqrt{2} to both sides.
\sqrt{3}x=\sqrt{6}+3\sqrt{2}
The equation is in standard form.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{\sqrt{6}+3\sqrt{2}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
x=\frac{\sqrt{6}+3\sqrt{2}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
x=\sqrt{2}+\sqrt{6}
Divide \sqrt{6}+3\sqrt{2} by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}