Solve for x (complex solution)
x=-\frac{m^{-\frac{1}{2}}\sqrt{\frac{2\left(m^{2}+4m-4\right)}{m-1}}\left(\sqrt{2}m-2\right)}{4}
m\neq 0\text{ and }m\neq 1\text{ and }m\neq \sqrt{2}
Solve for x
x=-\frac{\sqrt{\frac{2\left(m^{2}+4m-4\right)}{m\left(m-1\right)}}\left(\sqrt{2}m-2\right)}{4}
m>1\text{ and }m\neq \sqrt{2}
Graph
Share
Copied to clipboard
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{4+\frac{2m^{2}}{\left(\sqrt{2m-2}\right)^{2}}}
Express 2\times \frac{\sqrt{2m}}{2-\sqrt{2}m} as a single fraction.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{4+\frac{2m^{2}}{2m-2}}
Calculate \sqrt{2m-2} to the power of 2 and get 2m-2.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{4+\frac{2m^{2}}{2\left(m-1\right)}}
Factor the expressions that are not already factored in \frac{2m^{2}}{2m-2}.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{4+\frac{m^{2}}{m-1}}
Cancel out 2 in both numerator and denominator.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{\frac{4\left(m-1\right)}{m-1}+\frac{m^{2}}{m-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{m-1}{m-1}.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{\frac{4\left(m-1\right)+m^{2}}{m-1}}
Since \frac{4\left(m-1\right)}{m-1} and \frac{m^{2}}{m-1} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Do the multiplications in 4\left(m-1\right)+m^{2}.
\frac{2\sqrt{2m}}{\sqrt{2}\left(-m+\sqrt{2}\right)}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Factor the expressions that are not already factored in \frac{2\sqrt{2m}}{2-\sqrt{2}m}.
\frac{\sqrt{2}\sqrt{2m}}{-m+\sqrt{2}}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Cancel out \sqrt{2} in both numerator and denominator.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{\left(-m+\sqrt{2}\right)\left(-m-\sqrt{2}\right)}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Rationalize the denominator of \frac{\sqrt{2}\sqrt{2m}}{-m+\sqrt{2}} by multiplying numerator and denominator by -m-\sqrt{2}.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{\left(-m\right)^{2}-\left(\sqrt{2}\right)^{2}}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Consider \left(-m+\sqrt{2}\right)\left(-m-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{\left(-1\right)^{2}m^{2}-\left(\sqrt{2}\right)^{2}}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Expand \left(-m\right)^{2}.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{1m^{2}-\left(\sqrt{2}\right)^{2}}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Calculate -1 to the power of 2 and get 1.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{1m^{2}-2}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)x}{1m^{2}-2}=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Express \frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{1m^{2}-2}x as a single fraction.
\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)x=\left(m^{2}-2\right)\sqrt{\frac{4m-4+m^{2}}{m-1}}
Multiply both sides of the equation by m^{2}-2.
\left(-\sqrt{2}\sqrt{2m}m-\sqrt{2m}\left(\sqrt{2}\right)^{2}\right)x=\left(m^{2}-2\right)\sqrt{\frac{4m-4+m^{2}}{m-1}}
Use the distributive property to multiply \sqrt{2}\sqrt{2m} by -m-\sqrt{2}.
\left(-\sqrt{2}\sqrt{2m}m-\sqrt{2m}\times 2\right)x=\left(m^{2}-2\right)\sqrt{\frac{4m-4+m^{2}}{m-1}}
The square of \sqrt{2} is 2.
\left(-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}\right)x=\left(m^{2}-2\right)\sqrt{\frac{4m-4+m^{2}}{m-1}}
Multiply -1 and 2 to get -2.
-\sqrt{2}\sqrt{2m}mx-2\sqrt{2m}x=\left(m^{2}-2\right)\sqrt{\frac{4m-4+m^{2}}{m-1}}
Use the distributive property to multiply -\sqrt{2}\sqrt{2m}m-2\sqrt{2m} by x.
-\sqrt{2}\sqrt{2m}mx-2\sqrt{2m}x=m^{2}\sqrt{\frac{4m-4+m^{2}}{m-1}}-2\sqrt{\frac{4m-4+m^{2}}{m-1}}
Use the distributive property to multiply m^{2}-2 by \sqrt{\frac{4m-4+m^{2}}{m-1}}.
\left(-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}\right)x=m^{2}\sqrt{\frac{4m-4+m^{2}}{m-1}}-2\sqrt{\frac{4m-4+m^{2}}{m-1}}
Combine all terms containing x.
\left(-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}\right)x=\sqrt{\frac{m^{2}+4m-4}{m-1}}m^{2}-2\sqrt{\frac{m^{2}+4m-4}{m-1}}
The equation is in standard form.
\frac{\left(-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}\right)x}{-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}}=\frac{\sqrt{\frac{\left(m+2\right)^{2}-8}{m-1}}\left(m^{2}-2\right)}{-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}}
Divide both sides by -\sqrt{2}\sqrt{2m}m-2\sqrt{2m}.
x=\frac{\sqrt{\frac{\left(m+2\right)^{2}-8}{m-1}}\left(m^{2}-2\right)}{-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}}
Dividing by -\sqrt{2}\sqrt{2m}m-2\sqrt{2m} undoes the multiplication by -\sqrt{2}\sqrt{2m}m-2\sqrt{2m}.
x=-\frac{m^{-\frac{1}{2}}\sqrt{\frac{m^{2}+4m-4}{m-1}}\left(m^{2}-2\right)}{2\left(m+\sqrt{2}\right)}
Divide \left(m^{2}-2\right)\sqrt{\frac{\left(2+m\right)^{2}-8}{m-1}} by -\sqrt{2}\sqrt{2m}m-2\sqrt{2m}.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{4+\frac{2m^{2}}{\left(\sqrt{2m-2}\right)^{2}}}
Express 2\times \frac{\sqrt{2m}}{2-\sqrt{2}m} as a single fraction.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{4+\frac{2m^{2}}{2m-2}}
Calculate \sqrt{2m-2} to the power of 2 and get 2m-2.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{4+\frac{2m^{2}}{2\left(m-1\right)}}
Factor the expressions that are not already factored in \frac{2m^{2}}{2m-2}.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{4+\frac{m^{2}}{m-1}}
Cancel out 2 in both numerator and denominator.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{\frac{4\left(m-1\right)}{m-1}+\frac{m^{2}}{m-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{m-1}{m-1}.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{\frac{4\left(m-1\right)+m^{2}}{m-1}}
Since \frac{4\left(m-1\right)}{m-1} and \frac{m^{2}}{m-1} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{2m}}{2-\sqrt{2}m}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Do the multiplications in 4\left(m-1\right)+m^{2}.
\frac{2\sqrt{2m}}{\sqrt{2}\left(-m+\sqrt{2}\right)}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Factor the expressions that are not already factored in \frac{2\sqrt{2m}}{2-\sqrt{2}m}.
\frac{\sqrt{2}\sqrt{2m}}{-m+\sqrt{2}}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Cancel out \sqrt{2} in both numerator and denominator.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{\left(-m+\sqrt{2}\right)\left(-m-\sqrt{2}\right)}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Rationalize the denominator of \frac{\sqrt{2}\sqrt{2m}}{-m+\sqrt{2}} by multiplying numerator and denominator by -m-\sqrt{2}.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{\left(-m\right)^{2}-\left(\sqrt{2}\right)^{2}}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Consider \left(-m+\sqrt{2}\right)\left(-m-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{\left(-1\right)^{2}m^{2}-\left(\sqrt{2}\right)^{2}}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Expand \left(-m\right)^{2}.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{1m^{2}-\left(\sqrt{2}\right)^{2}}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Calculate -1 to the power of 2 and get 1.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{1m^{2}-2}x=\sqrt{\frac{4m-4+m^{2}}{m-1}}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)x}{1m^{2}-2}=\sqrt{\frac{4m-4+m^{2}}{m-1}}
Express \frac{\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)}{1m^{2}-2}x as a single fraction.
\sqrt{2}\sqrt{2m}\left(-m-\sqrt{2}\right)x=\left(m^{2}-2\right)\sqrt{\frac{4m-4+m^{2}}{m-1}}
Multiply both sides of the equation by m^{2}-2.
\left(-\sqrt{2}\sqrt{2m}m-\sqrt{2m}\left(\sqrt{2}\right)^{2}\right)x=\left(m^{2}-2\right)\sqrt{\frac{4m-4+m^{2}}{m-1}}
Use the distributive property to multiply \sqrt{2}\sqrt{2m} by -m-\sqrt{2}.
\left(-\sqrt{2}\sqrt{2m}m-\sqrt{2m}\times 2\right)x=\left(m^{2}-2\right)\sqrt{\frac{4m-4+m^{2}}{m-1}}
The square of \sqrt{2} is 2.
\left(-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}\right)x=\left(m^{2}-2\right)\sqrt{\frac{4m-4+m^{2}}{m-1}}
Multiply -1 and 2 to get -2.
-\sqrt{2}\sqrt{2m}mx-2\sqrt{2m}x=\left(m^{2}-2\right)\sqrt{\frac{4m-4+m^{2}}{m-1}}
Use the distributive property to multiply -\sqrt{2}\sqrt{2m}m-2\sqrt{2m} by x.
-\sqrt{2}\sqrt{2m}mx-2\sqrt{2m}x=m^{2}\sqrt{\frac{4m-4+m^{2}}{m-1}}-2\sqrt{\frac{4m-4+m^{2}}{m-1}}
Use the distributive property to multiply m^{2}-2 by \sqrt{\frac{4m-4+m^{2}}{m-1}}.
\left(-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}\right)x=m^{2}\sqrt{\frac{4m-4+m^{2}}{m-1}}-2\sqrt{\frac{4m-4+m^{2}}{m-1}}
Combine all terms containing x.
\left(-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}\right)x=\sqrt{\frac{m^{2}+4m-4}{m-1}}m^{2}-2\sqrt{\frac{m^{2}+4m-4}{m-1}}
The equation is in standard form.
\frac{\left(-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}\right)x}{-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}}=\frac{\sqrt{\frac{\left(m+2-2\sqrt{2}\right)\left(m+2\sqrt{2}+2\right)}{m-1}}\left(m^{2}-2\right)}{-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}}
Divide both sides by -\sqrt{2}\sqrt{2m}m-2\sqrt{2m}.
x=\frac{\sqrt{\frac{\left(m+2-2\sqrt{2}\right)\left(m+2\sqrt{2}+2\right)}{m-1}}\left(m^{2}-2\right)}{-\sqrt{2}\sqrt{2m}m-2\sqrt{2m}}
Dividing by -\sqrt{2}\sqrt{2m}m-2\sqrt{2m} undoes the multiplication by -\sqrt{2}\sqrt{2m}m-2\sqrt{2m}.
x=-\frac{\sqrt{\frac{2\left(m+2-2\sqrt{2}\right)\left(m+2\sqrt{2}+2\right)}{m-1}}\left(m^{2}-2\right)}{2\sqrt{m}\left(\sqrt{2}m+2\right)}
Divide \left(m^{2}-2\right)\sqrt{\frac{\left(2+2\sqrt{2}+m\right)\left(2-2\sqrt{2}+m\right)}{m-1}} by -\sqrt{2}\sqrt{2m}m-2\sqrt{2m}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}