Skip to main content
Solve for x
Tick mark Image
Graph

Share

3x\times \frac{2x}{\frac{3}{5}}=\frac{2}{3}\times 3\times 1
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of 3,x.
3x\times \frac{10}{3}x=\frac{2}{3}\times 3\times 1
Divide 2x by \frac{3}{5} to get \frac{10}{3}x.
10xx=\frac{2}{3}\times 3\times 1
Cancel out 3 and 3.
10x^{2}=\frac{2}{3}\times 3\times 1
Multiply x and x to get x^{2}.
10x^{2}=2\times 1
Cancel out 3 and 3.
10x^{2}=2
Multiply 2 and 1 to get 2.
x^{2}=\frac{2}{10}
Divide both sides by 10.
x^{2}=\frac{1}{5}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{5}}{5} x=-\frac{\sqrt{5}}{5}
Take the square root of both sides of the equation.
3x\times \frac{2x}{\frac{3}{5}}=\frac{2}{3}\times 3\times 1
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of 3,x.
3x\times \frac{10}{3}x=\frac{2}{3}\times 3\times 1
Divide 2x by \frac{3}{5} to get \frac{10}{3}x.
10xx=\frac{2}{3}\times 3\times 1
Cancel out 3 and 3.
10x^{2}=\frac{2}{3}\times 3\times 1
Multiply x and x to get x^{2}.
10x^{2}=2\times 1
Cancel out 3 and 3.
10x^{2}=2
Multiply 2 and 1 to get 2.
10x^{2}-2=0
Subtract 2 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 10\left(-2\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 0 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 10\left(-2\right)}}{2\times 10}
Square 0.
x=\frac{0±\sqrt{-40\left(-2\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{0±\sqrt{80}}{2\times 10}
Multiply -40 times -2.
x=\frac{0±4\sqrt{5}}{2\times 10}
Take the square root of 80.
x=\frac{0±4\sqrt{5}}{20}
Multiply 2 times 10.
x=\frac{\sqrt{5}}{5}
Now solve the equation x=\frac{0±4\sqrt{5}}{20} when ± is plus.
x=-\frac{\sqrt{5}}{5}
Now solve the equation x=\frac{0±4\sqrt{5}}{20} when ± is minus.
x=\frac{\sqrt{5}}{5} x=-\frac{\sqrt{5}}{5}
The equation is now solved.