Evaluate
2x^{8}-2x^{12}
Factor
2\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)x^{8}
Graph
Share
Copied to clipboard
2x^{8}-x^{8}\times 2x^{4}
To multiply powers of the same base, add their exponents. Add 5 and 3 to get 8.
2x^{8}-x^{12}\times 2
To multiply powers of the same base, add their exponents. Add 8 and 4 to get 12.
2x^{8}-2x^{12}
Multiply -1 and 2 to get -2.
2\left(x^{8}-x^{5}x^{3}x^{4}\right)
Factor out 2.
x^{8}\left(1-x^{4}\right)
Consider x^{8}-x^{12}. Factor out x^{8}.
\left(1+x^{2}\right)\left(1-x^{2}\right)
Consider 1-x^{4}. Rewrite 1-x^{4} as 1^{2}-\left(-x^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}+1\right)\left(-x^{2}+1\right)
Reorder the terms.
\left(1-x\right)\left(1+x\right)
Consider -x^{2}+1. Rewrite -x^{2}+1 as 1^{2}-x^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-x+1\right)\left(x+1\right)
Reorder the terms.
2x^{8}\left(x^{2}+1\right)\left(-x+1\right)\left(x+1\right)
Rewrite the complete factored expression. Polynomial x^{2}+1 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}