Factor
\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(2x+7\right)\left(x^{2}+1\right)
Evaluate
\left(x-5\right)\left(2x+7\right)\left(x^{4}-1\right)
Graph
Quiz
Polynomial
5 problems similar to:
2 x ^ { 6 } - 3 x ^ { 5 } - 35 x ^ { 4 } - 2 x ^ { 2 } + 3 x + 35
Share
Copied to clipboard
x^{4}\left(2x^{2}-3x-35\right)-\left(2x^{2}-3x-35\right)
Do the grouping 2x^{6}-3x^{5}-35x^{4}-2x^{2}+3x+35=\left(2x^{6}-3x^{5}-35x^{4}\right)+\left(-2x^{2}+3x+35\right), and factor out x^{4} in the first and -1 in the second group.
\left(2x^{2}-3x-35\right)\left(x^{4}-1\right)
Factor out common term 2x^{2}-3x-35 by using distributive property.
a+b=-3 ab=2\left(-35\right)=-70
Consider 2x^{2}-3x-35. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-35. To find a and b, set up a system to be solved.
1,-70 2,-35 5,-14 7,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -70.
1-70=-69 2-35=-33 5-14=-9 7-10=-3
Calculate the sum for each pair.
a=-10 b=7
The solution is the pair that gives sum -3.
\left(2x^{2}-10x\right)+\left(7x-35\right)
Rewrite 2x^{2}-3x-35 as \left(2x^{2}-10x\right)+\left(7x-35\right).
2x\left(x-5\right)+7\left(x-5\right)
Factor out 2x in the first and 7 in the second group.
\left(x-5\right)\left(2x+7\right)
Factor out common term x-5 by using distributive property.
\left(x^{2}-1\right)\left(x^{2}+1\right)
Consider x^{4}-1. Rewrite x^{4}-1 as \left(x^{2}\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)
Consider x^{2}-1. Rewrite x^{2}-1 as x^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-5\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(2x+7\right)
Rewrite the complete factored expression. Polynomial x^{2}+1 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}