Evaluate
27x^{4}\left(x^{5}-1\right)
Factor
27\left(x-1\right)x^{4}\left(x^{4}+x^{3}+x^{2}+x+1\right)
Graph
Share
Copied to clipboard
2x^{9}-27x^{4}+25x^{2}x^{7}
To multiply powers of the same base, add their exponents. Add 6 and 3 to get 9.
2x^{9}-27x^{4}+25x^{9}
To multiply powers of the same base, add their exponents. Add 2 and 7 to get 9.
27x^{9}-27x^{4}
Combine 2x^{9} and 25x^{9} to get 27x^{9}.
x^{2}\left(2x^{4}x^{3}-27x^{2}+25x^{7}\right)
Factor out x^{2}.
x^{2}\left(2x^{5}-27+25x^{5}\right)
Consider 2x^{7}-27x^{2}+25x^{7}. Factor out x^{2}.
27x^{5}-27
Consider 2x^{5}-27+25x^{5}. Multiply and combine like terms.
27\left(x^{5}-1\right)
Consider 27x^{5}-27. Factor out 27.
\left(x-1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
Consider x^{5}-1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 1. One such root is 1. Factor the polynomial by dividing it by x-1.
27x^{2}x^{2}\left(x-1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: x^{4}+x^{3}+x^{2}+x+1,x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}