Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2t^{2}-10t-8=0
Substitute t for x^{2}.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -10 for b, and -8 for c in the quadratic formula.
t=\frac{10±2\sqrt{41}}{4}
Do the calculations.
t=\frac{\sqrt{41}+5}{2} t=\frac{5-\sqrt{41}}{2}
Solve the equation t=\frac{10±2\sqrt{41}}{4} when ± is plus and when ± is minus.
x=-\sqrt{\frac{\sqrt{41}+5}{2}} x=\sqrt{\frac{\sqrt{41}+5}{2}} x=-i\sqrt{-\frac{5-\sqrt{41}}{2}} x=i\sqrt{-\frac{5-\sqrt{41}}{2}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
2t^{2}-10t-8=0
Substitute t for x^{2}.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -10 for b, and -8 for c in the quadratic formula.
t=\frac{10±2\sqrt{41}}{4}
Do the calculations.
t=\frac{\sqrt{41}+5}{2} t=\frac{5-\sqrt{41}}{2}
Solve the equation t=\frac{10±2\sqrt{41}}{4} when ± is plus and when ± is minus.
x=\frac{\sqrt{2\sqrt{41}+10}}{2} x=-\frac{\sqrt{2\sqrt{41}+10}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.