Solve for n
n=\frac{2x^{4}+3x^{3}+3x-9}{x^{2}}
x\neq 0
Graph
Share
Copied to clipboard
2x^{4}+3x^{3}-nx^{2}-9=-3x
Subtract 3x from both sides. Anything subtracted from zero gives its negation.
2x^{4}+3x^{3}-nx^{2}=-3x+9
Add 9 to both sides.
3x^{3}-nx^{2}=-3x+9-2x^{4}
Subtract 2x^{4} from both sides.
-nx^{2}=-3x+9-2x^{4}-3x^{3}
Subtract 3x^{3} from both sides.
\left(-x^{2}\right)n=9-3x-3x^{3}-2x^{4}
The equation is in standard form.
\frac{\left(-x^{2}\right)n}{-x^{2}}=\frac{9-3x-3x^{3}-2x^{4}}{-x^{2}}
Divide both sides by -x^{2}.
n=\frac{9-3x-3x^{3}-2x^{4}}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
n=2x^{2}+3x+\frac{3x-9}{x^{2}}
Divide -3x+9-2x^{4}-3x^{3} by -x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}