Factor
\left(2x-5\right)\left(x+6\right)\left(x-1\right)^{2}
Evaluate
\left(2x-5\right)\left(x+6\right)\left(x-1\right)^{2}
Graph
Share
Copied to clipboard
\left(2x-5\right)\left(x^{3}+4x^{2}-11x+6\right)
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -30 and q divides the leading coefficient 2. One such root is \frac{5}{2}. Factor the polynomial by dividing it by 2x-5.
\left(x+6\right)\left(x^{2}-2x+1\right)
Consider x^{3}+4x^{2}-11x+6. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 6 and q divides the leading coefficient 1. One such root is -6. Factor the polynomial by dividing it by x+6.
\left(x-1\right)^{2}
Consider x^{2}-2x+1. Use the perfect square formula, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, where a=x and b=1.
\left(2x-5\right)\left(x+6\right)\left(x-1\right)^{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}